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Abstract The Netflix Prize put a spotlight on the importance and use of recom-
mender systems in real-world applications. Many the competition provided many
lessons about how to approach recommendation and many more have been learned
since the Grand Prize was awarded in 2009. The evolution of industrial applica-
tions of recommender systems has been driven by the availability of different kinds
of user data and the level of interest for the area within the research community.
The goal of this chapter is to give an up-to-date overview of recommender systems
techniques used in an industrial setting. We will give a high-level description the
practical use of recommendation and personalization techniques. We will highlight
some of the main lessons learned from the Netflix Prize. We will then use Netflix
personalization as a case study to describe several approaches and techniques used
in a real-world recommendation system. Finally, we will pinpoint what we see as
some promising current research avenues and unsolved problems that deserve atten-
tion in this domain from an industry perspective.

1 Introduction

Recommender Systems are a prime example of the mainstream industry use of
large-scale machine learning and data mining. Diverse applications in areas such
as e-commerce, search, Internet music and video, gaming, and even online dating
apply similar techniques that leverage large volumes of data to better fulfill a user’s
needs in a personalized fashion. These techniques have such wide applicability be-
cause they have been demonstrated to be effective in increasing core business met-
rics such as customer satisfaction and revenue. In this chapter, we will focus on
approaches for applying recommendation algorithms with a focus on the problem
formulations, algorithms, and metrics. Of course, other aspects such as user inter-
action design can have a deep impact on the effectiveness of an approach. Those
topics are covered in other chapters in the book but are outside the scope of this one.
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Given an existing application, an improvement in the recommendation system
can have a value of millions of dollars and can be the factor that determines the
success or failure of a business. In section 2 we will review some of the typical uses
of recommendation systems in industry. While a lot of work in recommendation fo-
cuses on algorithms, there are other aspects of a recommendation approach that can
have a significant impact. For example, adding new data sources or representations
(features) to an existing algorithm. In section 4, we will use Netflix as the driving
example to describe the use of data, models, and other personalization techniques.

Another important factor we consider is how to measure the success of a given
personalization technique. Root mean squared error (RMSE) was the offline evalua-
tion metric chosen for the Netflix Prize (see section 3). But there are many other
relevant metrics that, if optimized, would lead to different solutions. For exam-
ple, ranking metrics such as Normalized Discounted Cumulative Gain (NDCG),
recall, or area under the ROC curve (AUC), often used in Information Retrieval,
can also be used to evaluate recommendations. However, beyond the optimization
of a given offline metric, what we are really pursuing is the impact of a technique
on the business. To do this, we need to relate the quality of a recommendation to
more customer-facing metrics such as click-through rate (CTR) or retention. We
will describe an approach of how to make use of offline and online metrics to drive
innovation, called “Consumer Data Science,” in section 6.

A key aspect in building a successful large-scale recommendation system is to
choose an appropriate architecture that is capable of running computationally com-
plex algorithms and also produces fresh results with an acceptable latency. In sec-
tion 7, we will describe a three-layer architecture that addresses these concerns. But
before we dive into these details, it will be useful to understand the uses of recom-
mender systems across industry. In the next section, we will briefly describe some
of the most typical use cases.

2 Recommender Systems in Industry

Recommendation systems are used by many Internet-focused companies in a vari-
ety of application domains. Each domain has its own unique recommendation chal-
lenges. We provide here a short overview of some of the more well-known applica-
tions in industry.

Today most e-commerce sites and applications are likely to have some sort of rec-
ommendation engine powering their user experience. The first large company to be
credited as having included a recommender system at the core of their experience
is Amazon. Amazon initially employed a simple item-item collaborative filtering
approach [48]. The current Amazon experience includes many different instances
of recommendation at different levels: from listings on the homepage to many prod-
uct pages having lists of other products bought or viewed. Other retail companies
such as eBay have followed the lead and incorporated recommendations in their
experience, such as post-purchase recommendations [88].



Recommender Systems in Industry: A Netflix Case study 3

News is also an area that companies have applied recommendation approaches
to personalize and focus on the interests of a user. For example, Google News was
powered by some kind of recommendations for news articles from the beginning
[49] [19]. Yahoo! has also invested in personalizing news and other web content
[47] [1]. For news recommendation, some of the key challenges are freshness, where
relevant articles may have a very limited time span, and diversity, where there can be
a large number of articles about the same topic. However, news has the advantage of
textual content, which allows for techniques from natural language processing to be
applied to create features that can be used in recommendation, which is especially
helpful when user behavioral data is sparse.

Video recommendation has always been an active area of research, so it is not
surprising that it is used in industry to recommend a variety of types of video span-
ning movies, TV shows, and user-generated content. For instance, recommendations
have been an important component of the YouTube experience to help navigate the
vast amounts of user-generated video [20]. With video, it can be hard to extract good
content information without harnessing sophisticated computer vision approaches.
While metadata may be available for professionally-created content, harnessing user
behavior has been key to building recommendations for videos. In such domains,
transitioning from ratings to learning-to-rank has shown to be important. Google, for
instance, uses a new family of loss functions and shows its applicability in YouTube
and Google Music [90].

Music recommendation is also an active application area where there have been
interesting developments in the past years. Pandora, for instance, created a complete
business model around the idea of creating personalized music stations. They cre-
ated an approach that combined traditional collaborative filtering techniques with a
curated approach called the Music Genome Project [72]. Similarly, Apple’s iTunes
application uses information about a user’s music library to drive personalized mixes
and playlists. More recently, Spotify started getting in the business of providing
personalized music recommendations in its service. Their approach to recommen-
dations is currently mostly based on standard matrix factorization techniques [9].
Finally, EchoNest was a well-known startup that provided music recommendation
engines powering many different services before being acquired by Spotify. They
combined different approaches including collaborative filtering, metadata, and au-
dio signal analysis of the music [46]. Music recommendation has some unique as-
pects [16], such as the multi-level nature of artists, albums, tracks, and playlists that
recommendations can be done across. Music tracks also typically short and often
listened to repeatedly, which can lead to interesting approaches for leveraging this
data and behavior.

More recently, social network companies have introduced a number of different
recommendation avenues. Twitter, for example, introduced their Who to Follow rec-
ommendation algorithm to recommend new social connections [29]. LinkedIn used
a Survival Analysis approach to understand how likely a user is to change jobs [89].
Google has also published work in recommendation systems for some of their so-
cial networks such as Orkut [18]. Yahoo! has also worked on personalizing aspects
such as comments on social sites [2] or tags in image collections for Flickr [77].
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Recommendation algorithms are also very important in online dating sites. Those
recommender systems have some particular requirements. For example, the success
of the system is not determined by one user receiving a good recommendation but
rather by both parties accepting it [61].

In addition to focusing on a single domain, some companies are applying rec-
ommendation approaches across domains and even potentially using data from one
domain to recommend in another. Microsoft developed a distributed Bayesian ap-
proach to recommendation systems called Matchbox [81]. This solution was de-
ployed in several different contexts. For example, it is the main building block of
the content recommendations for the XBox game console [39], including games,
apps, video, and music content.

Beyond companies building recommendation systems into their own products,
there are also many smaller companies that have focused their activity around devel-
oping general recommendation systems or technologies. Commendo [32] and Grav-
ity R&D [83], for example, are recommender system consulting firms that emerged
from some of the teams that competed in the Netflix Prize.

While many of the previous examples are interesting from an algorithmic per-
spective, they also represent the different or complimentary requirements that rec-
ommender systems have from an industrial point of view. For example, some impor-
tant issues that are mentioned in most of these publications, unlike in more academic
settings, are scalability, business metrics, and integration of the system in the overall
user experience. We will go into these issues in the remainder of this chapter.

3 The Netflix Prize

In 2006, Netflix announced the Netflix Prize, a machine learning and data mining
competition to predict movie ratings on a 5-star scale. We conducted this competi-
tion to find new ways to improve the recommendations we provide to our members,
which is a key part of our business. However, we had to come up with a proxy ques-
tion that was easier to evaluate and quantify: the root mean squared error (RMSE)
of the predicted rating. We offered a $1 million prize to whomever came up with a
solution that reduced RMSE by 10% beyond what was obtained by Cinematch, our
existing system.

The Netflix Prize put the spotlight on the Recommender Systems area and the
value of generating personalized recommendations from user data. It did so by
providing a crisp problem definition that enabled thousands of teams to focus on
improving a single metric. While this was a simplification of the recommendation
problem, many valuable lessons were learned.
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3.1 Lessons from the Prize

After the first year of competition, the KorBell team won the first Progress Prize
with an 8.43% improvement. They reported more than 2000 hours of work in order
to come up with the final combination of 107 algorithms that put them at the top
of the leaderboard and resulted in this prize. As per the terms of the competition,
they shared their resulting solution with the team at Netflix. We looked at the two
underlying algorithms with the best performance in the ensemble: Matrix Factoriza-
tion (MF) [44] 1 (see section 5.3) and Restricted Boltzmann Machines (RBM) [71].
Matrix Factorization by itself provided a 0.8914 RMSE, while RBM alone provided
a competitive but slightly worse 0.8990 RMSE. A linear blend of these two reduced
the error to 0.88.

Given that a combination of these two algorithms performed well on the compe-
tition dataset, we sought to put them to use. To do this, we had to overcome some
limitations. For instance, the competition code the authors provided was built to
handle 100 million ratings, however we needed to apply it to the more than 5 billion
that we have. Also, the code was designed to run on a static dataset and thus not
built to adapt as members added more ratings. Once we overcame those challenges,
we deployed the two algorithms into production, where they are still used to predict
our members ratings for videos.

One of the most interesting findings during the Netflix Prize came out of a blog
post. Simon Funk introduced an incremental, iterative, and approximate way to com-
pute a matrix factorization (referred to as SVD) using gradient descent [27]. This
provided a practical way to scale matrix factorization methods to large datasets. An-
other enhancement to matrix factorization methods was Koren et. al’s SVD++ [42].
This asymmetric variation enables adding both implicit and explicit feedback, and
removes the need for learning user-specific parameters for the implicit part.

The second model that proved successful in the Netflix Prize was the Restricted
Boltzmann Machine (RBM). RBMs can be understood as the fourth generation of
Artificial Neural Networks: the first being the Perceptron popularized in the 60s; the
second being the backpropagation algorithm in the 80s; and the third being Belief
Networks (BNs) from the 90s. RBMs are BNs that restrict the connectivity to make
learning easier. RBMs can be stacked to form Deep Belief Networks (DBN), which
is a form of deep learning. For the Netflix Prize, Salakhutditnov et al. proposed an
RBM structure with binary hidden units and softmax visible units with 5 biases that
are initialized with the movies that the user rated [71].

Many other learnings came out of the competition. For example, the matrix fac-
torization methods mentioned above were combined with traditional neighborhood-
based approaches [42]. Also, early in the competition, it became clear that it was
important to take into account temporal dynamics of user feedback [43]. Another
finding of the Netflix Prize was that there is a large amount of noise in the ratings

1 The application of Matrix Factorization to the task of rating prediction closely resembles the
technique known as Singular Value Decomposition used, for example, to identify latent factors in
Information Retrieval. Therefore, it is common to see people referring to this MF solution as SVD.
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provided by users. This was already known in the literature; Herlocker et al. [30]
coined the term “magic barrier” to refer to the limit of accuracy in a recommender
system due to the natural variability in ratings. This limit was relatively close to the
actual Prize threshold [5], and might be a factor in the substantial effort needed to
reduce RMSE by enough to cross the 10% line.

After almost three years, the final Grand Prize ensemble that won the $1M prize
was a truly impressive compilation and culmination of work, blending hundreds of
predictive models to finally cross the finish line [8]. The final solution was accom-
plished by combining many independent models developed by different teams that
joined forces. It highlights the power of using ensembles to combine a heteroge-
neous set of models to achieve maximum accuracy.

At Netflix, we evaluated some of the new methods included in the final solution.
The additional accuracy gains that we measured did not seem to justify the engineer-
ing effort needed to bring them into a production environment. In addition, our focus
on improving Netflix personalization had expanded beyond rating prediction. In the
next section, we will explain the different methods and components that produce a
complete personalization approach such as the one used by Netflix.

4 Recommendation Beyond Rating Prediction

Netflix has discovered through the years that there is significant business value in
incorporating recommendations to personalize as much of the user experience as
possible. This realization motivated the Netflix Prize described in the previous sec-
tion and has subsequently driven the effort to personalize the service in many other
ways. In section 2 we introduced different industrial scenarios for recommender
systems. In the following sections we will use Netflix as an example of a fully per-
sonalized industrial recommendation system.

Before we go into the details, first let us provide some context about the Netflix
service as it relates to personalization. Netflix was originally known as a DVD-
by-mail subscription service in the US, which it was at the time the Netflix Prize
started. However, it has since grown into an international Internet video streaming
subscription service. It allows members to instantly stream movies and TV shows
from a catalog to a multitude of devices such as laptops, smart TVs, game consoles,
tablets, and mobile phones. One of the key aspects of the Netflix service is that it
allows members to watch any video we have available in our catalog at any time on
any device. Since we have a large quantity of available videos that a member can
watch, a key concern is how to help members find videos in our catalog that they
want to watch and will enjoy enough to come back. This is the task where we rely
primarily on our recommendation system to help. The videos we have are licensed
from content providers or produced ourselves. The cost for serving each video is
approximately the same, so we have no incentive for favoring one video over an-
other when doing recommendation. Thus, we take a member-centric approach to
recommendation. This is in contrast to other domains such as e-commerce, online
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Fig. 1: Example of a Netflix Top 10 row. We promote personalization awareness and
reflect on the diversity of a household. Note that the labels are an illustration, since
the system does not explicitly know the true household composition.

advertising, or search where there can be very different amounts of revenue for dif-
ferent items.

4.1 Everything is a Recommendation

Netflix personalization starts on a member’s homepage, which the application dis-
plays on any device after login. This page consists of groups of videos arranged in
horizontal rows that create a two-dimensional grid of videos. Each row has a title
that conveys the intended meaningful connection between the group of videos in
that row. Most of our personalization is embodied in the way we generate rows,
select rows, determine what videos to include in a row, determine the ordering of
videos in a row, and determine the ordering rows on a page.

Take as a first example the Top 10 row (see Figure 1). This row is our best guess
of the videos a user is most likely to watch and enjoy. Of course, when we say “a
user’, we really mean everyone in a household using that membership (or profile).
It is important to keep in mind that Netflix personalization is intended to handle a
household that is likely to have different people with different tastes. That is why
with a Top 10 row, someone in a family that watches Netflix is likely to discover
items for dad, mom, the children, or the family as a whole. Even for a single person
household, we want the recommendations to appeal to a person’s range of interests
and moods. While there are specific techniques for group recommendations, such as
the ones described in chapter ??, those techniques usually rely on having captured
each individual preferences rather than an aggregate. For this and other reasons,
in most parts of our system we cater to different people and moods by not only
optimizing for accuracy, but also for diversity [69, 87].

Another important element of Netflix personalization is awareness. We want
members to be aware of how we are adapting to their tastes. This not only promotes
trust in the system, but also encourages members to give feedback, which will result
in better recommendations. A way of promoting trust with the personalization is
to provide explanations for why we decide to recommend a given movie or show
(see Figure 2). A video is not recommended because it suits a business needs, but
because it matches the information we have from a user: viewing history, explicit
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Fig. 2: Adding explanation and evidence for recommendations contributes to user
satisfaction and requires specific algorithms. Evidence can include your predicted
rating, related shows you have watched, or even friends who have interacted with
the video.

feedback of ratings and taste preferences, or even a friends recommendations. See
chapter ?? for more details on how to design good explanations for a recommender
system.

On the topic of friends, we have a social feature that allows members to connect
through Facebook to find friends who are also Netflix members. Knowing about
someone’s friends not only gives us another signal to use in our personalization
algorithms, but also allows us to create rows based on their social circle to generate
recommendations. See chapter ?? for some examples on how to use social network
information to generate recommendations.

Similarity is also an important aspect of personalization. We think of similarity in
a very broad sense; it can be between videos or between members, and can be along
multiple dimensions such as metadata, ratings, or viewing data. While similarity
itself can be used as the basis for a recommendation system, we tend to use various
forms of similarity as features in other models or as navigational constructs for the
user. For example, we generate rows of “adhoc genres” based on their similarity
to videos that a member has interacted with recently, which we label “Because you
watched”. Also, we provide a list of similar videos that a user may be interested in on
the information page for a video. Of course, there can be many different notions of
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Fig. 3: Similarity can be used to present recommendations in different contexts and
in response to certain user actions.

similarity between two items, each of which can be used for the basis of generating
a list of similars. These can be combined by constructing independent similarity
models and training an ensemble. Other more sophisticated graphical methods such
as SimRank [34] accomplish a similar goal. On the other hand, similarity itself can
be personalized using approaches such as Personalized Page Rank [26]

In many services like Netflix, even a situation where a user enters an explicit
search query can be turned into a recommendation. An example of this might be
the user entering a generic term (e.g. “summer” or “Italian”) or the title of an item
that is not available in the catalog. In these situations we need to come up with
good related recommendations. Even the auto-complete suggestions when the user
starts typing can be personalized and interpreted recommendation over a constrained
set. LinkedIn’s Metaphor system is another good example of a complete search
recommendation system [64].

In most of the previous contexts, the goal of the recommender system is to present
a number of attractive items for a person to choose from. This is usually accom-
plished by selecting some items and sorting them in the order of expected enjoy-
ment (or utility). Since the most common way of presenting recommended items
is in some form of list, we need an appropriate ranking model that can use a wide
variety of information to come up with an optimal ordering of the items. In the next
section, we will discuss how to design such a ranking model.
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4.2 Ranking

The goal of a personalized ranking system is to find the best possible ordering of
a set of items for a user within a specific context. At Netflix, we optimize ranking
algorithms to put videos that a member is most likely to play and enjoy at the begin-
ning of the list. We do this by learning a scoring function frank : U ×V → R that
maps from our (user, video) space to a score, which is a real number.

An obvious baseline for a ranking function that optimizes consumption is item
popularity. The reason is clear: on average, a member is most likely to watch what
most others are watching. However, popularity is the opposite of personalization; it
will produce the same ordering of items for every user. Thus, the goal becomes to
find a personalized ranking function that is better than item popularity, so we can
better satisfy users with varying tastes.

Recall that our goal is to recommend the videos that each member is most likely
to play and enjoy. One obvious way to approach this is to use the member’s predicted
rating of each item as an adjunct to item popularity. Using predicted ratings on their
own as a ranking function can lead to items that are too niche or unfamiliar. This
is because ratings on their own only indicate what someone who has watched a
video will rate it, and ignores that most people would rate lowly most videos if they
watched them [80]. It can also exclude items that the member may want to watch
even though they may not rate them highly. To compensate for this, rather than using
either popularity or predicted rating on their own, we would like to produce rankings
that balance both of these aspects. One way to do this is to build a ranking prediction
model using these two features.

Let us walk through an example of a very simple scoring approach by choosing
our ranking function to be a linear combination of popularity and predicted rating.
This gives an equation of the form frank(u,v) = w1 p(v)+w2r(u,v), where u repre-
sents the user, v is the video (item), p(v) is the popularity of video v, and r(u,v) is
the predicted rating for user u of video v. The bias term that is typically learned as
part of a linear model is omitted, since it is a constant and thus does not impact the
final ranking. This equation defines a line in a two-dimensional space (see Figure
4).

Once we have such a function, we can pass a set of videos for a given user
through it and sort them in descending order according to the score. However, first
we need to determine the weights w1 and w2 in our model. We can formulate this as
a machine learning problem: select positive and negative examples of (user, video)
pairs from historical data and let a machine learning algorithm learn the weights
that optimize our goal. Treating ranking as a classification or regression problem is
known as a pointwise approach in the family of machine learning techniques known
as Learning to Rank. In addition to recommendations, it is central to application
scenarios such as search engines or advertisement targeting. A crucial difference in
the case of ranked recommendations is the importance of personalization: we do not
expect to optimize a global notion of relevance, but rather a personalized one.

It is interesting to note that in this model, the predicted rating has gone from
being the final target variable we are trying to predict to generate a recommendation
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Fig. 4: Constructing a basic personalized two-dimensional ranking function based
on popularity and predicted rating.

Fig. 5: Performance of Netflix ranking system when adding features and optimizing
the learning to rank model. An example ranking metric is shown, but the results hold
across a range of such metrics.
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to being an input to another model that takes into account other features. A model
like this that uses outputs of other models as inputs to produce a final prediction are
also referred to as weighted hybrid models [14].

The previous two-dimensional model is a very basic example of a ranking func-
tion. Apart from popularity and predicted rating, we have tried many other features
at Netflix related to many aspects of the video, user, and their interaction. Some have
shown no positive effect while others have improved our ranking accuracy tremen-
dously. Features can be simple information derived from metadata or be produced
by other recommendation algorithms, as with the case of rating prediction. Also,
many supervised classification methods beyond simple linear models can be used
or adapted for ranking. In addition, algorithms that directly optimize ranking objec-
tives can be used. Figure 5 shows an improvement in ranking that we obtained by
adding different features and optimizing the machine learning approach, such as by
using other learning-to-rank approaches like the ones described in section 8.2.

4.3 Page Optimization

Another recognizable aspect of personalization in our service is the selection of
“genre” rows. These range from familiar high-level categories like “Comedies” and
“Dramas” to highly tailored slices such as “Imaginative Time Travel Movies from
the 1980s”. Each row represents 3 layers of personalization: the choice of genre it-
self, the subset of videos selected within that genre, and the ranking of those videos.
The set of potential genre rows is very large because they are created from combi-
nations of individual aspects (represented as tags) associated with a video. Thus, the
space of genres is much larger than the space of videos, which means selecting them
is in itself a recommendation problem. To handle this, row candidates are generated
using a member’s implicit genre preferences (recent plays, ratings, and other inter-
actions) or explicit feedback provided through our taste preference survey. These
elements are used both as input to the selection algorithm as well as evidence to
support the recommendations (see Figure 6).

The problem of generating a personalized and optimized page is complex. In the
Netflix scenario, there are many thousands of row candidates that can be selected
and ranked. As a matter of fact, the catalog of available candidate rows is much
larger than the catalog of individual items since the same item can be included in
many different rows. On the other hand, when optimizing the page, we are not only
optimizing relevance. As with other personalization elements, freshness and diver-
sity is taken into account to decide which of the thousands of possible genres to
show.

Finally, it is important to note that when optimizing a full page layout, we need
to incorporate a model of the user’s browsing or attention behavior (see Figure 7)
[45, 53]. For example, our model needs to consider whether the probability of the
user seeing and clicking the third item in the second row is higher or lower than the
probability of seeing and clicking the first item in the fourth row.
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Fig. 6: Netflix genre rows can be generated from implicit and/or explicit feedback.

Fig. 7: Browsing and attention behavior of users needs to be taken into account
when optimizing the whole page experience.

To conclude this section, it is worth highlighting how the recommendation ap-
proach has evolved at a company like Netflix. Starting from its formulation as a
rating prediction problem in the Netflix Prize, it evolved to a one-dimensional rank-
ing, and finally to a full-page personalized optimization problem. This evolution is
illustrated in Figure 8.
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Fig. 8: The recommendation approach at Netflix has evolved from focusing on rating
prediction to one-dimensional ranking and now to full page optimization.

5 Data and Models

5.1 Data

The discussion of ranking algorithms in the previous section highlights the impor-
tance of both data and models in creating an optimal recommendation experience.
The availability of high volumes of high-quality user data allows for us to use some
approaches that would have been unthinkable in the past. As an example, we will
discuss next some of the data sources that we can use at Netflix to inform our rec-
ommendations.

We have large amounts of play data about what videos users watch, when, for
how long, and on what device they watched it; as of 2013 we had around 50 million
play events coming into the service every day. Given that helping our users find
something to watch is one of our primary goals, this information about what and
how they have watched in the past is very important. We still have several billion
item ratings from users. We also receive millions of new ratings every day; 5 million
per day in 2013. Our users also add millions of items to their queues each day. They
also directly enter millions of search queries; 3 million per day in 2013. Our users
can also give explicit feedback on their interests by completing a signup onramp or
taste survey to express preferences.

On the item side, we already mentioned the use of item popularity for ranking.
We have many ways of computing popularity such as over various time ranges, ag-
gregating user actions in different ways, or grouping users by region or other similar-
ity metrics. Each item in our catalog also has rich metadata such as synopsis, genres,
actors, directors, subtitles, parental rating, and user reviews. Items also have asso-
ciated tag data, which are human-provided annotations on each video that describe
aspects such as mood (e.g. witty, dark, goofy), qualities (e.g. critically-acclaimed,
visually-striking, classic), and storyline (e.g. marriage, time travel, talking animals).
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Although a manual tagging approach would be unfeasible for other domains with a
larger or faster changing catalog, it can be very efficient and practical in a domain
like ours where the catalog is in the order of thousands of professionally-produced
items. In this case, it would be hard to obtain such high-quality annotations from
automatic methods. Finally, we can also tap into external data such as box office
performance or critic reviews as a basis for additional features to describe an item.

We collect presentation and impression data that records what items we have
recommended to a user, where we have shown them, and if they were rendered
on a page in the user interface. We can also observe a user’s interactions with the
recommendations: scrolls, mouse-overs, clicks, or the time spent on a given page.
Using this type of presentation and interaction data, we can look at the effect of
showing a recommendation on a user’s response. This is important for handling the
presentation bias, where a user is more likely to watch a video simply because we
put it in a location where they are likely to see it.

Some users choose to provide us with social data that we can also use for per-
sonalization. Social data may include the social network connections to other users,
as well as interactions or activities of those connected users. It can also provide a
source of interests (e.g. likes) beyond the scope of items in our catalog or movies
and TV shows in general.

There are also many other data sources related to a user or context such as demo-
graphics, language preference, device, location, or time that can be used to derive
features for our predictive models.

5.2 Models

Many different modeling approaches have been used for building recommenda-
tion systems. One thing we have found at Netflix is that with the great availabil-
ity of data, both in quantity and types, a thoughtful approach is required to model
selection, training, and testing. We use all sorts of machine learning approaches:
from unsupervised methods such as clustering and dimensionality reduction algo-
rithms to a number of supervised classifiers that have shown optimal results in var-
ious contexts. This is an incomplete list of methods that are useful to know when
working in machine learning for personalization: Linear regression, Logistic regres-
sion, Elastic nets, Singular Value Decomposition, Matrix Factorization, Restricted
Boltzmann Machines, Markov Chains, Latent Dirichlet Allocation [10], Association
Rules, Factorization Machines [65], Gradient Boosted Decision Trees [25], Ran-
dom Forests [12], and clustering techniques from the simple k-means to graphical
approaches such as Affinity Propagation [24] or non-parametric such as Hierarchi-
cal Dirichlet Processes [85].

There is no easy answer to how to know which model will perform best for a
given problem. In general, the simpler a feature space is, the simpler a model can
be. But it is easy to get trapped in a situation where a new feature does not show
value because the model cannot learn it. Or, the other way around, to conclude that
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a more powerful model is not useful simply because one does not have the feature
space that exploits its benefits. As such, it is important to understand how the prob-
lem definition, feature design, and model interact to find an optimal combination of
them.

Many other chapters in this book (see Chapter ?? on Data Mining Methods for
Recommender Systems for example) focus on describing these and other methods
and their applicability to recommender systems.

6 Consumer Data Science

An abundance of source data, measurements, and associated experiments allow Net-
flix to operate as a data-driven organization. We have embedded this approach into
our culture from when the company was founded and call it Consumer (Data) Sci-
ence. Broadly speaking, the main goal of Consumer Science is to effectively in-
novate for users by using data to drive product decisions. That is accomplished by
evaluating ideas rapidly, inexpensively, and objectively. We do this by running many
experiments to test ideas. Once something is tested, we want to know the outcome
and also understand why an approach succeeded or failed. This kind of approach
guides not only how we improve the personalization algorithms or recommendation
systems but also the majority of consumer-facing aspects of a service, from user
interface design to streaming technology.

We do this in practice by employing the scientific method and conducting ran-
domized controlled experiments, which are called AB tests (or bucket tests) [41]. A
standard AB test randomly assigns each user to one of two groups: A and B. Typ-
ically group A would be the control group that would be given the current default
experience. Group B that would have some new variation on that experience that is
hypothesized to be better than the current experience. We use the following steps in
running such an experiment:

1. Start with a hypothesis: Algorithm/feature/design X will increase user engage-
ment with our service and ultimately user retention.

2. Design a test: Think about issues such as dependent & independent variables,
control, and significance.

3. Implement the test: Set up the solution or prototype to run in a production en-
vironment where it can serve requests.

4. Execute the test: Assign users to the different groups and let them respond to
the different experiences.

5. Analyze the test: Look for statistically significant changes in business metrics
(e.g. retention) and try to explain them through variations in the behavioral met-
rics (e.g. increased selection of recommendations).

When we execute AB tests at Netflix, we track many different metrics (e.g. view-
ing hours). However, we ultimately trust user retention as our overall evaluation cri-
teria (OEC) [40] because it is a long-term metric that ties directly to the success
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Fig. 9: Following an iterative and data-driven offline-online process for innovating
in personalization

of the business as a whole. This is because as a montly subscription service, the
longer that a member stays with us, the more revenue we can collect. Of course, if
we want to run tests that measure retention, this means we have to let them run for
months to measure the effect. Tests usually have thousands of users and anywhere
from 2 to 20 experimental groups exploring variations of a base idea. We typically
have many AB tests running in parallel, and can independently run tests on different
components as long as there is no conflict between them. AB tests let us try radi-
cal ideas or test many approaches at the same time, but their key advantage is that
they allow our decisions to be data-driven. It also helps us to only keep changes
that objectively demonstrate a significant improvement, at least up to some level of
statistical confidence, which helps reduce the complexity of our product, systems,
and algorithms.

An interesting follow-up question that we have faced is how to integrate machine
learning approaches into this data-driven culture of AB testing at Netflix. We have
done this with an offline-online testing procedure that tries to combine the best of
both approaches (see Figure 9). The offline testing cycle is a process where we test
and optimize our algorithms on historical data prior to performing online AB test-
ing. To measure model performance offline we track multiple metrics: from rank-
ing measures such as normalized discounted cumulative gain and their page-level
generalizations, to classification metrics such as accuracy, precision, and recall, to
regression metrics such as RMSE, and other metrics to track different aspects of
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recommendation like diversity and coverage (see Chapter ?? for more details on
the use of offline metrics for evaluating recommender systems). We also keep track
of how well these offline metrics correlate to measurable online metrics in our AB
tests. However, since the mapping is not perfect, offline performance is only used
as an indication to make informed decisions on follow up steps, not to directly de-
ploy an algorithm without AB testing. Note that this correlation of offline and online
metrics is an important practical issue that has just started to get some attention in
the academic community [98].

Once offline testing has validated a hypothesis, we are ready to design and launch
the online AB test that will demonstrate if an algorithmic change is an improvement
from the perspective of user behavior. If it does, we will be ready to deploy the
algorithmic improvement to the whole user-base. In fact, this is how we developed
the personalization experience described in the previous sections: a sequence of AB
tests demonstrating that each successive improvement in personalization was better
than an unpersonalized method or the previous personalization approach.

We use this combination of offline and online testing for two primary reasons.
The first is that setting up offline tests are typically easier in terms of the engineering
involved because they do not need to serve millions of users in real-time. They
can also be faster because they can look at one sub-problem such as ranking or
rating prediction and rapidly evaluate changes at that level: on the scale of hours
or days, versus the months it takes to run an AB test to determine impact on long-
term metrics. This also leads to the second reason, which is that because we are
interested in long-term improvements, not just short-term ones, the pool of users we
can allocate to an AB test is a precious resource. This means that we want to make
sure we are always keeping the AB test experimentation pipeline full for a feature
and allocating users to tests that we have confidence will be better (or at the very
least not worse) than the current default experience.

7 Architectures

So far, we have highlighted the importance of using both data and algorithms to cre-
ate a good personalization experience. We also talked about enriching the interaction
and engaging the user with the recommendation system. There is another important
piece of the puzzle: how to create a software architecture that can deliver this ex-
perience and support rapid innovation. Coming up with a software architecture that
handles large volumes of existing data, is responsive to user interactions, and makes
it easy to experiment with new recommendation approaches is not a trivial task. In
this section we will describe a generic three-layer architecture that addresses these
challenges and its particular implementation at Netflix.

We will start by going through the general system architecture in Figure 10. It il-
lustrates a blueprint for multiple personalization algorithm services such as ranking,
row selection, and ratings prediction where each provide recommendations involv-
ing multi-layered machine learning. To start with, our users generate most of the
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Fig. 10: System-level architecture diagram for a recommendation system. The main
components of the architecture contains one or more machine learning algorithms.

events and data of interest to the system and at the end our system generates recom-
mendations to show them. The simplest thing we can do with data is to store it for
later offline processing, which provides input for offline jobs. However, computa-
tion can be done offline, nearline, or online. Online computation can respond better
to recent events and user interaction, but has to respond to requests in real-time 2.

2 For practical purposes we consider responses below a few hundred milliseconds (e.g. 200) to be
real-time.
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This can limit the computational complexity of algorithms deployed as well as the
amount of data that can be processed. Offline computation has less limitations on
the amount of data and the computational complexity of the algorithms since it runs
in a batch manner with relaxed timing requirements. However, it can easily grow
stale between updates because the most recent data is not incorporated. One of the
key issues in a personalization architecture is how to combine and manage online
and offline computation in a seamless manner. Nearline computation is an interme-
diate compromise between these two modes in which we can perform online-like
computations, but do not require them to be served in real-time. Model training is
another form of computation that uses existing data to generate a model that will
later be used during the actual computation of recommendation results. Another
part of the architecture describes how the different kinds of events and data need
to be handled by the event and data distribution system. A related issue is how to
combine the different signals and models that are needed across the offline, nearline,
and online regimes. Finally, we also need to figure out how to combine intermediate
recommendation results in a way that makes sense for the user 3. This whole infras-
tructure runs across the public Amazon Web Services cloud. The rest of this section
will detail the components of this architecture as well as their interactions. In order
to do so, we will break the general diagram into different sub-systems and we will
go into the details of each of them.

7.1 Event and Data Distribution

The goal of our system is to use past user interaction data to improve the user’s
future experience. For that reason, we would like the various user interface appli-
cations (Smart TVs, tablets, game consoles, etc.) to not only deliver a delightful
user experience but also collect as many user actions as possible. These actions can
be related to clicks, browsing, viewing, or even the content of the viewport at any
time. They can be aggregated to provide base data for our algorithms. Here we try to
make a distinction between data and events, although the boundary can be blurry. We
think of events as small units of time-sensitive information that need to be processed
with low latency. These events are routed to trigger a subsequent process, such as
updating a nearline result set. On the other hand, we think of data as more dense
information units that might need to be processed and stored for later use. Here the
latency is not as important as the information quality and quantity. Of course, there
are user actions that can be treated as both events and data and therefore sent to both
flows.

At Netflix, our near-real-time event flow is managed through an internal frame-
work called Manhattan. Manhattan is a distributed computation system that is cen-
tral to our algorithmic architecture for recommendation. It is somewhat similar to

3 Intermediate recommendations usually represent lists of items that have been pre-selected and
even ranked in advanced but need to undergo further processing such as filtering or re-ranking
before being presented to the user.
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Twitter’s Storm, but it addresses different concerns and responds to a different set
of internal requirements. The data flow is managed mostly through logging through
Chukwa4 [62] to Hadoop5 for the initial steps of the process. Later we use Hermes,
described in the next section, as our publish-subscribe mechanism.

7.2 Offline, Nearline, and Online Computation

As mentioned above, our algorithmic results can be computed either online in real-
time, offline in batch, or nearline in between. Each approach has its advantages and
disadvantages, which need to be taken into account for each use case.

Online computation can respond quickly to events and use the most recent data.
An example is to assemble a gallery of action movies sorted for a user given the
current context. Online components are subject to availability and response time
Service Level Agreements (SLA) that specify the maximum latency of the compo-
nent in responding to requests from client applications while our user is waiting for
recommendations to appear. For example, that recommendations need to be returned
in at least 250ms for 99% of all requests. This can make it harder to fit complex and
computationally costly algorithms in this approach. Also, a purely online computa-
tion may fail to meet its SLA in some circumstances, so it is always important to
have a fast fallback mechanism such as reverting to a precomputed result. Comput-
ing online also means that the various data sources involved also need to be available
online, which can require additional infrastructure to serve that data.

On the other end of the spectrum, offline computation enables more algorithmic
approaches such as complex algorithms and less limitations on the amount of data
that is used. A trivial example might be to periodically aggregate statistics from
millions of video play events to compile baseline popularity metrics for recommen-
dations. Offline systems also have simpler engineering requirements. For example,
relaxed response time SLAs imposed by clients can be easily met. New algorithms
can be deployed in production without the need to put too much effort into per-
formance tuning. In the context of Consumer Science we take advantage of this
to support rapid experimentation: if a new experimental algorithm is slower to ex-
ecute, we can choose to simply deploy more cloud compute instances to achieve
the throughput required to run an experiment, instead of spending valuable engi-
neering time optimizing performance for an algorithm that may prove to be of little
business value. However, because offline processing does not have strong latency
requirements, it can not react quickly to changes in context or new data. Ultimately,
this can lead to staleness that may degrade the usefulness of recommendations and
thus the user experience. Offline computation also requires having infrastructure for
storing, computing, and accessing large sets of precomputed results.

4 Chukwa is a Hadoop subproject devoted to large-scale log collection and analysis.
5 Hadoop is an open-source software framework for storage and large-scale processing of data-sets
on clusters of commodity hardware.
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Much of the computation we need for personalization involving machine learn-
ing algorithms can be done offline. This means that the jobs can be scheduled to be
executed periodically and their execution does not need to be synchronous with the
request or presentation of the results. There are two main kinds of tasks that fall in
this category: model training and batch computation of intermediate or final results.
In the model training jobs, we collect relevant existing data and apply a machine
learning algorithm to produce a set of model parameters (which we will henceforth
refer to as the model). The training process usually involves training several mod-
els with different hyper-parameters in order to select the optimal one. This final
model will usually be encoded and stored in a file for later consumption. Although
most of the models are trained offline in batch mode, we also have some incremen-
tal learning techniques where training updates are indeed performed online. Batch
computation of results is the offline process defined above in which we use existing
models and corresponding input data to compute results that will be used at a later
time either for subsequent online processing or direct presentation to the user.

Both of these tasks need refined data to process, which usually is generated by
running a database query. Since these queries run over large amounts of data, it
can be beneficial to run them in a distributed fashion, which makes them very good
candidates for running on Hadoop via either Hive6 or Pig7 jobs. Once the queries
have completed, we use a mechanism for publishing the resulting data. We have
several requirements for that mechanism: First, it should notify subscribers when
the result of a query is ready. Second, it should support different repositories (not
only HDFS8, but also S39 or Cassandra, for instance). Finally, it should transpar-
ently handle errors, allow for monitoring, and alerting. At Netflix we use an internal
tool named Hermes that provides all of these capabilities and integrates them into a
coherent publish-subscribe framework. It allows data to be delivered to subscribers
in near real-time. In some sense, it covers some of the same use cases as Apache
Kafka 10, but it is not a message/event queue system.

Nearline computation can be seen as a compromise between the two previous
modes. In this case, computation is performed exactly like in the online case. How-
ever, we remove the requirement to serve results as soon as they are computed and
can instead store them, allowing processing to be asynchronous. The nearline com-
putation is done in response to user events so that the system can be more responsive
between requests. This opens the door for potentially more complex processing to
be done per event. An example is to update recommendations to reflect that a video
has been watched immediately after a user begins to watch it. Results can be stored

6 Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data sum-
marization, query, and analysis.
7 Pig is a high-level platform for creating MapReduce programs used with Hadoop using a lan-
guage called Pig Latin.
8 The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware.
9 Amazon S3 (Simple Storage Service) is an online file storage web service offered by Amazon
Web Services.
10 Apache Kafka is publish-subscribe messaging rethought as a distributed commit log.
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in an intermediate caching or storage backend. Nearline computation is also a natu-
ral setting for applying incremental learning algorithms.

In any case, the choice of online/nearline/offline processing is not an either/or
question. All approaches can and should be combined. There are many ways to
combine them. We already mentioned the idea of using offline computation as a
fallback. Another option is to precompute part of a result with an offline process
and leave the less costly or more context-sensitive parts of the algorithms for online
computation.

Even the modeling part can be done in a hybrid offline/online manner. This is
not a natural fit for traditional supervised classification applications where the clas-
sifier has to be trained in batch from labeled data and will only be applied online to
classify new inputs. However, approaches such as Matrix Factorization are a more
natural fit for hybrid online/offline modeling: some factors can be precomputed of-
fline while others can be updated in real-time to create a more fresh result. Other
unsupervised approaches such as clustering also allow for offline computation of
the cluster centers and online assignment of clusters. These examples point to the
possibility of separating our model training into a large-scale and potentially com-
plex global model training and then alighter user-specific model training or updating
phase that can be performed online or nearline.

Regardless of whether we are doing an online or offline computation, we need
to think about how an algorithm will handle three kinds of inputs: models, data,
and signals. Models are usually small files of parameters that have been previously
trained offline. Data is previously processed information that has been stored in
some sort of database, such as movie metadata or popularity. We use the term signals
to refer to fresh information we input to algorithms. This data is obtained from live
services and can be made of user-related information, such as what the user has
watched recently, or context data such as session, device, or time.

7.3 Recommendation Results

The goal of our recommendation system is to come up with a personalized set of
recommendations. These results can be serviced directly from lists that we have
previously computed or they can be generated on the fly by online algorithms. Of
course, we can think of using a combination of both where the bulk of the recom-
mendations are computed offline and we add some freshness by post-processing the
lists with online algorithms that use real-time signals.

At Netflix, we store offline and intermediate results in various repositories to be
later consumed at request time: the primary data stores we use are Cassandra11, EV-

11 Apache Cassandra is an open source distributed database management system designed to han-
dle large amounts of data across many commodity servers, providing high availability with no
single point of failure.
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Cache12, and MySQL13. Each solution has advantages and disadvantages over the
others. MySQL allows for storage of structured relational data that might be required
for some future process through general-purpose querying. However, the generality
comes at the cost of scalability issues in distributed environments. Cassandra and
EVCache both offer the advantages of key-value stores. Cassandra is a well-known
solution for a distributed and scalable NoSQL store. Cassandra works well in some
situations, however in cases where we need intensive and constant write operations
we find EVCache to be a better fit. The key issue, however, is not so much where to
store the results but how to handle the requirements in a way that conflicting goals
such as query complexity, read/write latency, and transactional consistency meet at
an optimal point for each use case.

8 Research Directions with Industrial Applicability

The Netflix Prize spurred a lot of research advances, but the prize was a simplifi-
cation of the full recommendation problem. In section 4, we illustrated the broader
scope of the recommendation problem by presenting Netflix’ comprehensive ap-
proach. In this section, we will describe some of the latest advances in Recom-
mender Systems by highlighting some of the most promising research directions.
Many of these directions are enabled by the availability of larger amounts of differ-
ent data such as implicit user feedback, contextual information, or social network
interaction data.

8.1 Beyond explicit ratings

Explicit ratings are neither the only feedback we can get from our users nor the best
kind of feedback. As already described, explicit feedback is noisy. Another issue is
that ratings are provided on an ordinal scale. However, traditional methods wrongly
interpret ratings as being linear, for example by computing averages. This issue,
however, has been addressed by some recent methods such as OrdRec [95] that treat
rating prediction as ordinal regression.

In most real-world situations, implicit feedback is much more readily available
than ratings and requires no extra effort on the user side. For instance, with a web
page you can have users visiting a URL or clicking on an ad as a positive feed-
back. In a music service, a user can decide to listen to a song. We already described
in section 5.1 that Netflix relies on many different kinds of data, the most impor-
tant of which is user implicit feedback on the service about what a user watched.
Also, many of these recommendation applications focus on helping a user choose

12 EVCache is a distributed in-memory data store for the cloud.
13 MySQL is one of the most popular open source relational databases.
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an action (click, listen, watch), so it makes sense that information about previous
such actions contain highly relevant information for predicting future actions. That
is why, besides trying to address some of the issues with explicit ratings, there have
been many recent approaches that use the more reliable and readily available data
from implicit feedback. For example, Bayesian Personalized Ranking (BPR) [66],
uses implicit feedback to compute a personalized ranking.

Implicit and explicit feedback can be combined in different ways [59]. Even the
SVD++ approach explained in section 3.1 can combine explicit and implicit feed-
back. Another way is to use logistic ordinal regression [60] to provide a mapping.
Taking a Bayesian approach like Matchbox [81], also offers a framework to inte-
grate different kinds of feedback such as ordinal ratings or implicit like/don’t like
preferences.

8.2 Personalized Learning to Rank

In section 4 we highlighted the importance of ranking in an online recommendation
scenario such as Netflix. The traditional pointwise approach to learning to rank de-
scribed in section 4.2 treats ranking as a simple binary classification problem where
the only input are positive and negative examples. Typical models used in this con-
text include Logistic Regression, Support Vector Machines, or Gradient Boosted
Decision Trees.

There is a growing research effort in finding better approaches to ranking. The
pairwise approach to ranking, for instance, optimizes a loss function defined on
pairwise preferences from the user. The goal is to minimize the number of prefer-
ence inversions in the resulting ranking. Once we have reformulated the problem
this way, we can transform it back into the previous binary classification problem.
Examples of such an approach are RankSVM [17], RankBoost [23], RankNet [13],
or BPR.

We can also try to directly optimize the ranking of the whole list by using a list-
wise approach. RankCosine [91], for example, uses similarity between the ranking
list and the ground truth as a loss function. ListNet [15] uses KL-divergence as loss
function by defining a probability distribution. RankALS [82] defines an objective
function that directly includes the ranking optimization and then uses Alternating
Least Squares (ALS) for optimizing.

Across these approaches, we use rank-specific information retrieval metrics to
measure the performance of a ranking model. Some of those metrics include Nor-
malized Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR), or Fraction of Concordant Pairs (FCP). Ideally, we
would like to directly optimize our models those same metrics. However, it is hard
to optimize machine-learned models directly on these measures since they are not
differentiable and standard methods such as gradient descent or ALS cannot be di-
rectly applied.
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In order to optimize those metrics, some methods find a smoothed version of
the objective function to run gradient descent. CLiMF optimizes MRR [76], and
TFMAP [75], optimizes MAP in a similar way. AdaRank [93] uses boosting to
optimize NDCG. Another method to optimize NDCG is NDCG-Boost [86], which
optimizes the expectation of NDCG over all possible permutations. SVM-MAP [94]
relaxes the MAP metric by adding it to the SVM constraints. It is even possible
to directly optimize the non-differentiable IR metrics by using techniques such as
Coordinate Ascent [84], Genetic Programming, Simulated Annealing [36], or even
Particle Swarming [21].

8.3 Full Page Optimization

While one-dimensional ranking is already a step beyond rating prediction, we are
most interested in optimizing the personalized experience over a complete “page”.
In order to do that we need to account for several things such as user navigational
patterns, attention models and diversity [54]. While this is not a common theme in
the literature, there are a few recent papers that are addressing the issue. Amr et. al,
for example, present a complete approach to full page optimization in the context
of news [3]. Their approach includes a sequential click model for the user and a
relevance model that promotes diversity through the use of submodular functions.

8.4 Context-aware recommendations

Most of the work on recommender systems has traditionally focused on the two-
dimensional user/item problem. But we know that in practice many other dimen-
sions might effect a user’s preference. In the case of Netflix, for example, the user’s
preference for shows might depend on variables such as time of the day, day of the
week, or viewing device. All of teose other dimensions are referred to as context.
Using contextual variables represents having to deal with more data and a higher
dimensional problem. However, there is the potential for effective improvements in
applications that make use of context [28].

Adomavicius and Tuzhilin do a thorough review of approaches to contextual
recommendations in chapter ?? of this book. They categorize context-aware rec-
ommender systems (CARS) into three types: contextual pre-filtering, where con-
text drives data selection; contextual post-filtering, where context is used to filter
recommendations once they have been computed using a traditional approach; and
contextual modeling, where context is integrated directly into the model. Although
some standard approaches to recommendation could theoretically accept more di-
mensions, the only a few models have been adapted in this way. Oku et al.’s Context-
aware Support Vector Machines (SVM) [58] extend SVMs with context dimensions
to do recommendation. Xiong et al. present a Bayesian Probabilistic Tensor Factor-
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ization model to capture the temporal evolution of online shopping preferences [92].
The authors show in their experiments that results using this third dimension in
the form of a tensor does improve accuracy when compared to the non-temporal
case. Multiverse is another multidimensional tensor factorization approach to con-
textual recommendations that has proved effective in different situations [35]. An-
other novel approach to contextual recommendations worth mentioning is the one
based on the use of Sparse Linear Method (SLIM) [55].

A Factorization Machine [65] is a novel general-purpose regression model that
models interactions between pairs of variables and the target by using factors. Fac-
torization Machines have proved to be useful in different tasks and domains [67]. In
particular, they can be efficiently used to model the interaction of contextual vari-
ables [68].

8.5 Metrics and Evaluation

Another important area of research for recommender systems is the development of
metrics that accurately map to user satisfaction with the recommendations. This has
been a concern for many years [30,37,51,80], but it is far from being solved. Chapter
?? of this book has a very good survey of the different approaches to evaluating
recommender systems.

One of the issues with accuracy metrics is how much they are biased for popular-
ity. Some recent research addresses this by trying to remove this popularity bias [79].
However, accuracy is not the only metric we should look at when evaluating recom-
mendations [52]. Vargas et al., for instance, propose a framework to evaluate also
novelty and diversity. In general, we would like to optimize a recommender sys-
tem to different metrics at the same time. To help with this, there are some recent
attempts to introduce a multiple objective optimization function [69, 70]. These ap-
proaches deal with how to optimize a recommender system offline by using training
data.

However, the ultimate objective should always be to evaluate the system on real
users. This is best accomplished through the use of online AB tests. But the use
of AB tests can be costly and challenging [40]. Thus, sometimes controlled user
experiments might be a tool worth considering [38].

8.6 Class imbalance problems and presentation effects

In the traditional formulation of the recommendation problem, we have pairs of
items and users but user feedback values for very few of those dyads. The problem is
then formulated as finding a utility function or model to estimate values for missing
dyads. However, in cases where we have implicit feedback, the recommendation
problem becomes predicting the probability a user will interact with a given item.
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There is a big shortcoming in using the standard recommendation formulation in
such a setting: we do not have negative feedback. All the data we have is either
positive or missing. The missing data includes both items that the user explicitly
chose to ignore because they were not appealing and items that would have been
perfect recommendations but were never presented to the user [78].

One way to address this class imblance problem is to convert missing examples
into both a positive and a negative example, each with a different weight related to
the probability that a random exemplar is positive or negative [22]. Another solu-
tion is to binarize the implicit feedback values: any feedback value greater than zero
means positive preference, while any value equal to zero is converted to no pref-
erence [31]. A greater value in the implicit feedback value is used to measure the
“confidence” in the fact the user liked the item. For example, in a music listening
experience, playing a song would always be considered as positive feedback while
the amount of repetitions (or for how long it was listened to) would be interpreted
as support.

In many practical situations, we have more information than the simple binary
implicit feedback from the user. In particular, we might know whether items not
selected by the user were actually displayed to the user. This adds very valuable
information, but slightly complicates the formulation of our recommendation prob-
lem. We now have three different kinds of values for items: positive, presented but
not chosen, and not presented. This issue has been recently addressed by the so-
called Collaborative Competitive Filtering (CCF) approach [96]. The goal of CCF
is to model not only the collaboration between similar users and items, but also the
competition between items for user attention. Another important issue related to
how items are presented is the so-called position bias: An item that is presented in
the first position of a list is more likely to be seen and chosen than one that is further
down [63].

8.7 Social Recommendations

Many applications such as Netflix have access to social network data for some users.
The use of this new source of data for recommendations is an active area of research,
as highlighted in chapter ??. Most of the initial approaches to social recommenda-
tion14 relied on the so-called trust-based model where the trust (or influence) of
others is transmitted through the social network connections [6, 57]. However, it
is still unclear whether users prefer recommendations from friends to those com-
ing from other users. For instance, in another study [11], the authors found that the
selection of users where the recommendation came from did not make much dif-
ference, except if the recipients of the recommendation were made aware of it. In
any case, it seems clear that social trust can be used in a positive way to generate
explanations and support.

14 It is important to note that the term “social recommendation” was originally used to describe
collaborative filtering approaches [7, 74]
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There are other uses of social information. For instance, social network data can
be an efficient way to deal with user or item cold-start. Social information can, for
instance, be used to select the most informative and relevant users or items for mod-
eling [50]. In terms of selecting users, some recent methods propose using social
information to select experts [73] in a similar way as collaborative filtering set-
tings [4].

Social-based recommendations can also be combined with the more traditional
content-based or collaborative filtering approaches [33]. Social network information
can even be efficiently included in a pure collaborative filtering setting, for example
by including it in the matrix factorization objective function [56, 97].

9 Conclusion

The Netflix Prize abstracted the recommendation problem to a simplified proxy of
predicting ratings. It is now clear that this objective, accurate prediction of ratings,
is just one of many components in an effective industrial recommendation system.
These systems also need to take into account factors such as diversity, context, pop-
ularity, interest, evidence, freshness, and novelty. Trying to balance these often com-
peting factors can be a daunting task, but we have found that it is best handled using
a range of algorithmic approaches and many types of data.

Recommender systems deployed in the wild, such as those at Netflix, have the
difficult goal of optimizing the probability a user chooses something and enjoys it
enough to come back to the service. In order to do so, we need to figure out the
best way employ all the available data: from user interactions to item metadata.
We also need to have optimized approaches, appropriate metrics, rapid experimen-
tation frameworks, solid algorithmic techniques, and scalable architectures embe-
ded within a sound methology for figuring out what actually improves the user ex-
perience. When we put all of this together, we find ourselves continually making
progress towards that goal of creating the best possible recommendation experience
for our users.
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