Frameworks Generate Domain-Speci ¢
Languages: a Case-study in the Multimedia
Domain

Xavier Amatriain , Telefonica Research, Barcelona, Spain
Pau Arumi , Barcelona Media, Barcelona, Spain

F

ABSTRACT
We present an approach to software framework development

that includes the generation of domain-specic languagespsis, as with any language, are made of a vocabulary,
(DSL) and pattern languages as goals for the process. QUgrammar, and a syntax. The vocabulary, and the grammar
model is made of three work ows — framework, metamodehnd syntax at the abstract level, are provided by an assdciat
and patterns — and three phases — inception, constructidn, ghetamodel. But the concrete syntax will depend on the way
formalization. The main conclusion is that when develogngthe particular DSL is implementede-g.whether it is a visual
framework we can produce with minimal overhead — almogf textual-based DSL. In other words, a given metamodel,
as a side-effect — a metamodel with an associated DSkhich includes every component of a DSL except for its
and a pattern language. Both outputs will not only helgoncrete syntax, might be implemented or realized through
the framework evolve in the right direction but will also beyifferent concrete syntaxes.

valuable in themselves. _There are two common approaches to de ne a DSL: Start

In order to illustrate these ideas, we present a case-study b, the general-purpose UML and constrain and re ne its
the multimedia domain. For several years we have been de-

veloping a multimedia framework. The process has productg?d€ 0 better embrace domain speci cities; or use a generi
a full- edged domain-speci ¢ metamodel for the multimedigMetamodeling tool in order to de ne a new modeling language
domain, with an associated DSL, and a pattern language. that relates to domain modeling concepts (see Mernik's.et al

Index Terms —D.2.11.b Domain-speci ¢ architectures D.1.7 Visual Pro- Survey [26] for more information on standard approaches to
gramming D.2.18.a Life cycle D.2.2.a CASE DSL design).
Here, we present a different approach that consists of
integrating the de nition of a DSL in the development proges
1 INTRODUCTION of a software framework. Rather than proposing this as a
The benets of modeling languages are well-established general-purpose approach to de ning a DSL, our goal is to
engineering. The basic idea is to come up with a set bighlight that both ideas are so intimately related that mhe
commonly accepted concepts, notations, and rules in ordiEveloping a domain framework using recorded best pragtice
to better express problems and solutions. This way we atés possible to obtain a full- edged DSL with very little ded
mimicking the exibility of a natural language in which aoverhead: frameworks generate domain-specic languages.
vocabulary, syntax, and grammar allows the expression e resulting DSL will fall in the category e&fmbeddedSLs.
complex ideas by combining atomic semantic and functiondh embedded DSL, as de ned by Hudak [18], is a DSL
units. that is derived from a general-purpose programming languag
UML lled a gap in Software Engineering by standardizingnheriting the infrastructure and tailoring it to the speci
a generic modeling language. The existence of such a exibdemain.
and general-purpose modeling language is good enough iOur approach to DSL design is part of a comprehensive
many cases. In others, however, we would prefer to haveramework development process model that aims at not only
more tailored and specialized tool, even if that means comproducing a high-quality framework but also at providing
promising exibility and genericity. Furthermore, the gait a domain-speci ¢ language and a pattern language. Those
UML is sometimes distant from the concepts and tools usedantputs may well become more valuable than the framework
some particular domains. Having domain experts adopt UMtself since they can be reused beyond the framework. Our pro
is not always the best solution: we would like our generigosed process model explicitly distinguishes three wonkso
Software Engineering tools and concepts to adapt to thesdramework, metamodel, and patterns — and three phases —
particular domains. inception, construction, and formalization — in the depelo
Domain-speci ¢ languages (DSL) aim at solving thesenent process. We also promote the iterative nature of psoces
issues by offering a comprehensive modeling languager¢ailo so that all outputs — framework, DSL, and pattern language —
to a particular domain. General modeling techniques amade derived incrementally, feeding from the evolution of th
practices are combined with a thorough domain analysis. Tother products. We describe all these work ows and phases,
result is a subset or subclass of those general technigqueds, tincluding their interactions, in Section 2.
and practices that better t the particular application @om In some sense, our approach resembles the one outlined by

Roberts and Johnson [28] in their collection of framework pa2.1 Framework Work ow

terns. We review their approach, together with others eélatThe framework work ow hosts all of the activities that focus

process models, in Section 3. on delivering a useful framework in theaditional sense
In order to illustrate these ideas, we present a case-study13), [29]. Therefore, our proposed approach in this womk o

the multimedia domain in Section 4. For several years Wglies on applying well-known best practices for framework

have been developing CLAM, a framework for audio angevelopment. In particular, we base our process model on the
multimedia (see Section 4.1) . The process has producegofiowing principles:

full- edged domain-speci ¢ metamodel (presented in Seoti Small initial investment
4.2), a DSL with several concrete syntaxes (see Section 4.3) |ierative and incremental development
and a Pattern Language (see Section 4.4). Application-driven framework design

2 A DSL-ORIENTED FRAMEWORK DEVELOP- Strive for black-box behavior o

In the next paragraphs, we will detail how these principles
MENT PROCESS are put into practice into each of the process phases.
In this section we propose a general-purpose process model)) L
for framework development. The goal of such a procegsl'l Inception: Framework Requirement Elicitation
will be — beyond the obvious design of a well-constructe@e do not favor a big upfront analysis and design phase.df thi
and useful framework — the generation of a domain-speciié seldom advisable when developing any kind of application
language (or several) and a pattern language. The iterati/& even less so when developing a framework. The number
formulation of a domain metamodel drives the design proce§$ use cases and breadth of the problem, make the unknowns
which can be considered a particular approach to Mod&OW exponentially. _ _ _
Driven Development (MDD) [25] in the context of framework \We cannot aim at capturing the details of a whole domain
development. during this initial phase. However, there are important ac-

The proposed process model is mainly derived from ifvities that we shoulql undertake in or_der to obtain a rst
authors' experience in developing the CLAM framework. ThEugh domain analysis. When developing a regular system,
details of this particular process and its outcomes will b€ usually identifyactors that will interact with our system.
explained in Section 4. We shall now focus on formulatin i important to bear in mind that in a framework, a special,
a general-purpose approach based on those learnings. and_mo_st important, form of actors, yvll_l be the concrete
Figure 1 illustrates the main activities in the proposegPPlications that will be developed within the framework.

framework development process. The process is divided intB€refore, one of the basic activities in this phase will be
three separate threads work ows: Framework Work ow to identify a set of relevant gppllcatlons that play the rofe
Metamodel Work ow and Patterns Work ow Each of these the actors by de ning some initial use cases. Ideally, we twan

work ows encompasses and frames activities at a particu@found 3 to 4 applications that give a good enough sample
abstraction level. of the problem space ie. they should have requirements as

&ifferent as possible and represent as many of the targeted

process, which we calinception Construction and Formal- US€ cases as possible. In CL.AM, for i_nstance, we choose an
izatiorl. Each phase hosts different activities with a differeftPPlication with strong real-time requirements, anothee o
goal in mind. However, note that we provide several iteratigVith @ complex process ow, and a nal one with a focus on
points. For instance, the Construction phase, where most®fomplete and exible user interface (see Section 4.1 for
the development will occur, should be completely increraentmore details). The |n|t|al_ selection of applications toveri
with iterations as short as possible. Also, once the foaali ffamework development is captured by tiiree Examples
tion phase is concluded, we do not expect the framework RG{t€rM in Roberts and Johnson's catalog [29].
remain unchanged. For this reason we provide the model Withlo!eally,_the applications we choose to drive our _framework
an iteration point that leads back into the Constructiorsphades'gn will already be develop_ed z_;md f_uIIy functional. The_
Our proposed model is in fact favorabledgile principles. goal when choosing these applications is to treat them as if

Among other things, we advocate for a simple upfront analyéhey were to b_e refactored into th_e frame_/vork mfr_astr.ua:tur_
and design and an iterative approach for the rest of t welcomed side effect of choosing working applications is

process. Our process can therefore be considered as awondPat these_ will have developers with a good understanding of
implementation ofagile metamodelingé] in the context of the domain. These developers should help us understand the
framework development domain and should become our on-site clients on the technica

. . . ide.
The novelty in our process model is not so much in the way .) .
y P aquhe inception phase should be as short as possible. How-

a particular work ow is addressed, since in each of them we dina th t of rel i licati d underi
rely on well-known techniques and practices. The noveltyg is ever, nding the set of relevant applications and understzg

the fact that the three work ows are addressed in paralfed, athe|r requirements is not a trivial task.
we expose an explicit relation and communication channels] 2 Construction: Application-driven Framework De-
between all three work ows. sign

1. Although these names bears some resemblance with thenBRlatini ed In the Inception phase we chose appllcat!ons with the idea
Process, our model is not related to the RUP framework to refactor them into the framework, while the framework

We also show three distinct phases in the developm

- - = - - - 1 — —9— — — N
(hure
Requirement Pattorms
Elicitation /
App. Selection

Inception
|(Domain Analysis)

Initial
Metamodel /
Metaphor

Analysis /
Architecture
Patterns

Usage
Patterns
Projection ||

Metafor

Pattern:
o 1 71—\ e) S~—1—
(7 -y T T T v 4 \l
P Metamodel Design Domain)
| Apglelcztlloonm;]\zen Refinement Patterns Patterns Patterns | Construction
velop Application || Idenfication) | Identification
N L — N— J
I -

Metamodel
Formalization

Pattern
Language
Formalization

Towards black-box
Behavior

Implementation

Fig. 1. Main activities in our framework development process model that includes three work ows — framework,
metamodel, and patterns — and three phases — inception, construction, and formalization.

itself is designed to host the requirements posed by thewithout the need to use inheritance and understand thenadter
However, although some applications might yield themselvbehavior of the classes [21].
to be progressively refactored into a framework, from our In order to reach the ideal completely black-box behavior,
experience it is usually better to rewrite them from scratclve would need to offer ready-to-use versions of any com-
Sample applications set the basis for the requirements, pahent that could be needed in the framework domain. This
these requirements evolve during the process. Drivingiappghight be feasible if the framework is focused on a small
cations might well be treated akrow-away prototypeslf enough sub-domain. However, most of the time, our goal will
the process is done correctly, the framework will give birthe to minimize, rather than to eliminate, the need for white-
to many more successful applications and even the origirmix intervention.
driving applications should be improved if still needed In this phase, once the framework infrastructure (or core)

Framework design is an ongoing and continuous re nemeirig, stable enough, we will deliver a black-box version of the
each new iteration is likely to impose new requirementsost useful components. As an alternative, we can sometimes
and challenges onto it. But after some iterations the coflesign pluggable objects[28], classes that can be easily
framework development should become minimal. This idea parametrized in order to change the behavior, therefore re-
core frameworks similar to Bosch'st al. model of framework ducing the number of classes we need to effectively cover the
development where they distinguish betweame framework problem space.
development anéhternal increment$13]. But in our process A fully functional black-box framework is very close to a
model, we promote internal increments that end up deligeridSL. If we have followed a similar progression in the meta-
the core framework as a consequence, rather than trying tonxodel work ow, all we need to do is add an appropriate syntax
the core in an initial upfront design. and tools to interact with the model by plugging components.
As a matter of fact Johnson & Roberfglsual Builder[28],
which is a natural evolution of the black-box framework, can
be considered a visual domain-speci ¢ language.
The goal of the framework work ow should be to come up
\é\”th a framework that is as close as poss_|ble to a black—b%2 Metamodel Work ow

ehavior. A black-box framework is one in which you can

deve|0p app"ca’[ions by S|mp|y p|ugg|ng Components twethWhlle the goal of the framework work ow is to come up with
an appropriate set of tools for application developers m th

2. Many times the functionality that was originally offerég a focused dealn, the goa_l of this metamOd.el Work ow Is to .Come up
application is offered as a service in the framework with the appropriateonceptsin a similar way, we will start

2.1.3 Formalization: Black-box Behavior

with an open and evolving metaphor that will turn into a more Yet, it is important to remember — and explicitly state
concrete domain metamodel [16] as iterations go. The nal - that this is an evolving metamodel. Some of the
goal will be to turn this metamodel into a DSL with several preconceived ideas about the domain might prove wrong
syntaxes that offer the users direct access to the metamodel or inexact during the framework development process.
concepts. Ideally, one of these syntaxes will be of a gragbhic ~ We — and the domain experts — should be prepared to
form therefore becoming thésual builderin the framework. embrace change

2.2.2 Construction: Metamodel Re nement

The metamodel re nement takes place throughout the frame-

One of the main activities in the inception phase is t\(R/ork development and in some sense will still be active as

perf?rrrgj .SO?e sqrt of Ido.ma'” .anlalysls. The hmamtac.:tlv?lqgng as the framework keeps evolving. However, most of
involved in domain analysis are: (1) Domain charactenaati the metamodel re nement takes place in the Construction

(2) data CO."eCt'On’ (3) data _analy5|s, (4) classi Ca"@‘?‘_ hase, when white-box components (i.e. abstract classes) a
(5_) evaluation of the domain model [7]. These aCt'V't'_egefactored to accommodate new requirements in the driving
will take place regardless of the approach. However, ti plications.

and efforts devoted to each tagk will vary. For instgpcg, ' Metamodel re nement should aim at making the rst rough
approaches th_at lean towards qg!le_meth_ods I'k? ‘_JL_”SJM'V approach more concrete and broad at the same time. Concrete
(3) and (4) will tend to be minimized in the initial phas_ebecause particular applications and the framework impreme

Sation will have to be correctly explained by the metamodel;

during the development phase. F_urthermqre, when deyegjquhd broad because the more applications and use we give to
a framework, we want the domain analysis to be appllcatlome framework, the more we will be testing the metamodel
driven. Therefore, “domain characterization” will be migin '

q by identifving th it licati that cdla validity and its scope.
one by identifying 91 appropria e_ap”p ications that cdie Unfortunately, metamodel testing cannot be automated in
problem space. And “data collection” will imply analyzmgan

th licati d understandina both thei Jn y way, since it deals with verifying that conceptual con-
€se applications and understanding bo EIr SeManes o\,cts and concepts used in the evolving metaphor are aslid
requirements. Finally, note that our model evaluation Wwél

q th h the f K impl tation itself the framework design evolves. Metamodel testing at thigesta
one through the framework implementation itseit. consists on the following activity: Given the current itiéoa

In.the. framework work ow, our goal was to select thosgn the framework development process, verify that all cptse
applications thgt will help us de ne the requirements gnd Wland constructs in the white-box framework infrastructuae c
be used to drive the framework development. .In thls_ r_n.etgé expressed simply by using the evolving metaphor. Make
model work ow, however, we are concerned with activitie§ e that all driving applications can also be interpreted i
that deal with modeling domain concepts and constr_ucts. Aie?ms of the metamodel. Pay special attention to changes
result, a rst and rough metamodel should be Verbal'ze?SThhtroduced in latest framework increment. If any of the pre-
rst metamodel can be in most senses treated as the SYStEiBus is not veri ed, iterate over metamodel/metaphor lunti

metaphor” [34] and should be used to better communicai&.an naturally explain current state in the framework. @th

between framework developers and the potential users. Yy iementary activitites for metamodel and DSL validatio

should set a common understanding of what is being buifa+ require having a more stable metamodel, will be desdrib
and with what purpose, by de ning particular terminologylan;, e formalization phase for this same work ow. However,
proce_dures.) those activities can also be integrated with the iterations
This metaphor should be treated as an “evolving meta-\jetamodel re nement is not a sequential activity that needs
model”. We do not expect it to be a ground ftruth and itg, pe executed at the end of each iteration — adding the possi-
eyolutlon will in fact mark its re nement. We should eXpeC'bjlity of blocking the development process. It is an actt
this metamodel to become more concrete and also Mulfi metamodel work ow and should therefore be carried out
layered in each iteration. _ _in parallel to any framework development. Furthermore, we
At this stage already a few issues should be taken infye explained the natural and obvious ow of communication
account when de ning this metamodel: from the framework to the metamodel. However, sometimes
The reason we call this domain metamodeds opposed — especially in later iterations, once the metamodel is more
to a regular domain model is that the concepts shouiteble — it is the metamodel that will remain xed and enforce
not be tailored to a particular application but rathesome changes in the next iterations of the framework if this
capture the whole range of possible applications that thas drifted from the metamodel without having a good enough
framework is targeting in the given domain. reason for doing so.
One of the main objectives of sketching this metamodel
is to better communicate with the domain experts that23 Formalization: Metamodel Consolidation and DSL
are targeted as users. Remember that this will becofiegplementation
the shared metaphor. Increments at the metamodel level will lead to a formalized
Because of the previous point, it is important to choogaetamodel in the Formalization phase. But even this for-
appropriate names and to consult with the input ohalization might need to adapt to further refactorings &s th
domain-experts when doing this analysis. framework evolves.

2.2.1 Inception: Domain Analysis or the First Metamodel

In any case, once we have a fairly stable metamodel and th8 Patterns Work ow

framework white-box behavior has been de ned, we should bgytterns should be instrumental throughout the framework
ready to realize this metamodel through a DSL. Again, givefevelopment process. As a matter of fact, they should inagen
the iterative nature of our proposed model, it may well bé thg,e development process in many ways. Not only do we
a DSL already exists even if in a preliminary form. But, agromote the use of different kinds of patterns, but we also
this stage the implementation of a DSL will simply requirghtroduce the idea that patterns should be one of the expecte
deciding on a given notation that re ects the metamodel ar&ljtputs of the process. A complete pattern language should
implementing the tool to interact with it. be the perfect complement for the full- edged metamodel and
One of the most dif cult parts of this metamodel work ow DSL obtained in the metamodel work ow. Patterns help us
is to integrate proper testing and validation. We now déscridocument frameworks [20], but not only that: using patterns
some of the activities that have proven useful to validage thillows us to understand the framework as a composition of
metamodel and associated DSL. Although we describe thgatterns [35].
as if they were to occur at the end of the work ow, as a sort of In the following paragraphs we will highlight how patterns
acceptance tesmany of them can and should be intergratedre used, discovered, and formulated in the different ghake
into the iterations so that the validation is also performeatis pattern work ow.

iteratively. 231 | ion: P for Analvsi
As we showed in the evaluation of our multimedia meta-"" nception: Patterns for Analysis

model and DSL [4], a proper evaluation of a metamoddin€ rst thing we need to be aware of and understand are the
should include a combination of qualitative and quantitati SO-calledmeta patterns According to Pree: "Meta patterns
studies. But, because in Software Engineering validatizh a2 & Set of design patterns that described how to construct a
implementation go hand in hand [37], we base part of tffEamework independently of the domain” [27]. An example of

evaluation in the concrete implementation of the metamoddl'€t@ patterns that should be reviewed before starting 8ie ta
fof designing a framework are those by Roberts & Johnson

A rst and necessary condlthn __to prove the val|d|t_y 0[29]. Understanding these meta patterns will be the rst use
a metamodel is to prove that it isnplementableand its)
of patterns in our pattern work ow.

implementation can be used to develop a variety of systemsOn the other hand, it should be obvious that this inception

Another necessary condition to prove the usefulness of th . .
. . ase is the natural host for all sort of analysis patterhes&
metamodel is to show that it can help understand syste%s

outside the framework that originated it. We can do this H:Jatterns can pe grouped into thr_ee_ different c_ategone)s: <
e . . . eneral analysis patterns, (2) specialized analysisrpattand
explaining how similar systems in the same domain can

explained or even synthesized using the metamodel and domain pattems [30]
DXSpL : v y 1z€d using ! owever, generally applicable analysis patterns, indepen

. o dent of the domain, are hard to nd. And when they exist,
Finally, we can formally assess the validity of the framelworthey tend not to give a very concrete solution to an analysis

by combining dimensions derived from the general Softwaﬁﬁouems_ A good example are some of the patterns in the
Engineering corpus [37] with others borrowed from the CegnsRASP catalog [22]. Also related, are general purpose archi
tive Dimensions Framework [17]. Higher-level dimensioRs C tactyral patterns such as those in the POSA catalog [145€The
be used to validate and test the metamodel, while lowevet lek5p indeed be considered a form of analysis patterns siege th
dimensions — such as the ones in the Congitive Dimensiong a1 de ne a high-level starting point for our design.
can help us validate the DSL. But, what we are most interested in our process model
Some high-level dimensions that can be use to validateésauncovering domain patterns. These domain patterns will
metamodel are [36]feasibility, completenessand usability. follow an analysis process made of three different but eelat
Feasibility refers to how practical the abstractions in thectivities:
metamodel are and how well they t the requirements in our pure Domain Patterns Elicitation: By talking to domain
particular domainCompletenesse ects two complementary experts and regular stakeholders, our goal is to identify
questions: (1) caany system in the domain be modeled with patterns that are used in the domain. Patterns should be,
the metamodel that is proposed? and (2), can a system be as always, a recurring solution to a problem in a context.
completely modeled using an instance of the metamodel? And At this stage, these domain patterns can be completely
Usability tries to answer questions such as whether it is easy to detached from any software solution, since they simply
build new models and generate systems using the metamodel; explain how domain experts address those issues and
whether the metamodel is usable by third parties; and whethe sjtuations that we will be covering in our framework.
existing projects can easily be converted to the metamodel. Metaphorical Patterns Description: Given the metaphor
The Cognitive Dimensions Framework [17] includes ner- (i.e. rough domain metamodel) described in the meta-
grain dimensions that can be used to validate the DSL. This model work ow, we want to identify, already in this
framework has been speci cally designed for evaluatingiais phase, related patterns. This basically entails trangjati
languages but many of its dimensions are applicable to non- the pure domain patterns elicited in the previous step to
visual DSLs. The Framework includes dimensions such as: the concepts and constructs of the driving metaphor.
Viscosity Hidden DependencigdHard Mental Operations Usage Patterns Projection By choosing the driving
Imposed Guess Aheadnd Secondary Notatian applications in the framework work ow, we are de ning

what we deem are relevant framework use cases. Asmay address high-level architectural problems, offer tamhs
matter of fact, an initial assessment of the requiremerttsa particular usage of the framework, or give low-leveliges
posed by the driving applications will already uncover details for some of the components.

r_1umber pf recurring usage needs. At this point we 3% RELATED APPROACHES

likely to identify some recurring problems and contexts

but not their solution. Still, it is a good practice to recordioberts & Johnson proposed an approach to framework devel-

these usage patterns and bear them in mind in the n&RMment that is somewhat similar to ours [28]. As a matter of
phases. fact, and to the best of our knowledge, it is the only approach

{Qat touches upon the three work ows included in our process
model. They propose to base framework development in a se-
Fies of patterns that cover different phases of the devetopm
process. For instance, thehree Examplepattern advocates

Some of these uncovered domain patterns might be rela
to pre-existing patterns in neighboring domains. Thesfare
should not forget to support our ndings by searching fo

pattern catalogs describing similar or related domainghén identifving th licati | to drive the i
multimedia pattern language we present in Section 4.4, 1I identifying three applications early on to drive the iges

instance, we were able to re-use and adapt patterns comW temk?(l)n E;?:T(eljoac\(/:ics)LdallrgJi(lj dtehrls:l'ﬁﬁsttiz r?ﬂ?gg&’i?ﬂ?i;’;??gd be
from related data ow languages. X %

our proposed approach in which a DSL should be the ultimate

232 Construction: Pattern Evolution goal of the development process — asa matte.r of fact, the DSL
. . . can be understood as the sum of thisual builderand the

T_he main goal for the congtructllon phase s to .evolve trf&nguage toolgattern, also included in their catalog.

dl_fferent patterns that were identi ed in the inception pba_ However, there are important differences between our model

First, patterns related to the metaphor should progrégsivg, that of Robert & Johnson. First, although the authors do

evolve into metamodel patterns with the nal goal of bein%et a path to go from initial framework design to a DSL,
able to understand the metamodel as a composition of th do not establish the de nition of the DSL as a goal

pe}tterns. As a ma_tter of fact, some of these metamode_l pattegs the process itself. As a matter of fact, they consider that
might at some point become part of the metamodel, since t ny frameworks will never make it to the nal stage so they

will be de ning concepts and constructs that are inherent il never have the need to provide any kind of DSL. The
the metamodel itself. authors do not distinguish different work ows — althouglesh
On the other hand, this is the phase where usage patt€jgSe,piain that some patterns are concurrent — or identify

will be formulated and become concrete. The different '}terﬁhases and activities. More important perhaps, they do not
tions in the framework work ow will end up offering SOIUt'm, establish a clear relation between parallel activitiesoAlit

to the usage problem-context pairs identi ed in the inoepti is dif cult to interpret how to t in the iterative nature ofhte

phase. Usage patterns will also help evolve the framewodk &), ess into their pattern language. Finally, and althcthgh

the metamodel n the right d_lrect|on. main concern is the patterns work ow, they do not consider
The construction phase is also the natural place Whefg, natterns at different levels may be needed. For instance
st_andard design patterns W_'” be used. Ideally, these rplmtethey do not discuss the need of design patterns or domain-
will .not only be used but will also help de ne the Iow-levelspeci ¢ patterns. In any case, we do not see our process model
design for some of the metamodel patterns. As a matter qf fagg opposed to this pattern language. Our approach is more
some of the metamodel patterns might be a sort of specializefl, nrehensive, detailed, and structured but it is comiglete
design patterns for the given domain. compatible with Roberts & Johnson patterns and complements
— L them in many ways.
2.3.3 Formalization: Pattern Language Formalization Van Deurseret. al [32] explain that a typical development
As seen in the previous phases, both the metamodel afch DSL involves three steps with a number of phases:
the framework itself give place to a number of patterns Analysis: (1) identify problem domain, (2) gather domain
that include domain patterns, metamodel patterns, sjzsigl knowledge, (3) cluster knowledge into small number of

design patterns and usage patterns. This does indeed heve t concepts, and (4) design a DSL that describes applica-
feedback between the three work ows. tions in the domain.

Our nal goal in this work ow is to de ne agenerative Implementation: (1) Construct a library that implements

pattern language® — i.e. a pattern language that not only the concepts, and (2) design and implement a compiler
explains rules of arrangement but also allows users to@reat i at translates DSL programs to library calls

endless combinations [2]. Therefore, patterns should @m a |jge- (1) Write DSL programs for all applications

being coherent. However, they should also be useful in iso- : ,

) L . Although this approach bears some resemblance with our
lation and in different settings than the ones de ned by t h here | ; | diferi
metamodel. Patterns in our nal generative pattern langua ree phases, there Is a very important conceptua diiberem

' fhat it promotes aanalysis- rstapproach to DSLs. Also, there

3. Note that the use of the word “language” in this contextdsaonsistent is no notion of iteration between phases. Most |mportanttly,

with the formal notion of language as in Domain Speci ¢ Laaga. We have does not provide any relation between the development of the
chosen to use the expression “Pattern Language” for censistwith existing DS and that of the framework.

literature. In this context, a Pattern Language should lierstood, as de ned . -

by Johnson, as “a set of patterns, each of which describestbolve a Aksit et. al [1] propose a four phase approach to bUIldlng

particular kind of problem” [20]. frameworks using domain models. First, they model the top-

level structure of the framework using the so-cakedwledge and overlapping in which the same class can belong to
graphs Second, they re ne each node in the graph into aseveral patterns. POAD advices for the use of the stringing
acyclic sub-knowledge graph calledowledge domairiThird, approach at the higher levels of abstractions while allgwin
they identify which nodes can be included together in the tofor overlapping patterns in the detail design of the lower
level knowledge graph. Finally, they map knowledge domaitevels. Although this approach is a good approximation to ou
into OO concepts. This approach is interesting in that jatterns work ow, there are several differences. For insta
addresses both the framework and metamodel work ows. Bilte POAD approach only deals with the use of pre-existing
the model is so much focused on formalities that its prakcticdesign patterns assuming that a pattern library exists vleen
applicability in the general case is not clear. analysis phase starts. The main goal of the analysis phase is

Van Deursen notes the similarity between DSLs and Oi@ fact to select the most appropriate patterns, which deg la
frameworks in his case study on the nancial domain [31]. Hmtegrated into the model in the design phase. Also, aralysi
concludes that when developing a DSL from scratch, it makpatterns are not included in the POAD process, nor is the goal
sense to do it by extending an OO framework. Using a DSif the development to uncover new domain-speci ¢ patterns.
in the context of a framework development has, according toFinally Jacobsert. al present a pattern-oriented approach
van Deursen, the following advantages: (1) it is a guide & tlspeci ¢ for framework development [19]. They highlight the
framework design since any construct that does not t ndlura distinction between regular design patterns ameta patterns
into the DSL should probably not be in the framework eitheand show that patterns are useful in different ways in alkpka
(2) it encourages black-box, as opposed to white-box, hehavof the framework development process — analysis, desigh, an
in frameworks, and (3) it gives more abstract access to timeplementation. During these phases, not only new patterns
framework, encapsulating even the language used to devedop created but others are evolved by either transformation
the framework. The author's conclusions when relating famreplacement. The authors capture the importance of botiy usi
works and DSLs are in essence very similar to ours excepid generating patterns during the process in an increinenta
that the starting point is different: we advocate for a psscemanner, but they do not show how to formalize this into a
that integrates metamodel and framework work ows since ttgattern language nor mention any connection to metamaglelin
beginning while Van Deursen starts from the premise thataativities.

pre-existing framework can benet from a DSL.
Bonachet. al[12] present a practical case study of deve? A CASE STUDY IN THE MULTIMEDIA DOMAIN

oping a DSL for costumer user pro ling. They advocate forrhe history of software frameworks is very much related to
a completely iterative process model, with iteration ot the evolution of the multimedia eld itself. Many of the most
between most activities. They report executing the foltayi successful and well-known examples of software frameworks
activities: (1) interview domain experts, (2) develop misde deal with graphics or user interfaces. Although probab$g le
(3) write programs that observe the models by hand, (4) desighown, the audio and music elds also have a long tradition
the language, (5) write programs using the language, (6) i similar development tools. It is in this context where we
plement runtime system and language compiler. In particulahd our award-winning CLAM framework [3}.
they stress the importance of keeping domain experts ie@olv pyring the CLAM development process several parallel ac-
during the whole process. Although this approach focusbs oRjyities have taken place. While some sought the goal ofritavi
on our metamodel work ow, it is interesting since it highis 3 more usable framework, others dealt with the appropriate
the iterative nature of the DSL nature, which is also a vegpstractions and reusable constructs in the domain. Ttee lat
important conclusion of our approach. gave place to the de nition of a complete metamodel for
Cleaveland [15] proposes a process model for buildinge multimedia domain, and a pattern language for data ow-
application generatorswhich are a particular case of DSLgriented systems. Most of these ideas, although a resuifeof t
in which a compiler translates high-level speci cationsoin cLAM process itself, are validated by their presence in many
a regular low-level programming language. The process thgjher multimedia frameworks and environments.
propose is made of seven steps: (1) recognize domains, (2pyr experience in this development process originated
de ne domain boundaries, (3) de ne an underlying model, (4he general approach we presented in Section 2. As such,
de ne the variant and invariant parts, (5) de ne speci @ati | AM touches upon the three work ows and phases described
input, (6) de ne products, and (7) implement the generataherein. In this section we will not detail the activitiessgorac-
According to Cleaveland, all but the last step are led by doma;jces used in the process since they are already documented
analysts. His proposed approach can be seen as a semaliza} the general-purpose approach. Instead, we will desthiée
of our concurrent metamodel and framework work ows irbutput of each of the work ows. In section 4.1, we explain
which initial activities are more related to the metamod® a the main components and features of the framework, which
nal ones to the framework. are the result of the framework work ow. In section 4.2, we
Yacoub & Ammar describe a pattern-oriented approach &pjain the metamodel, and in section 4.3 we show how this
build software systems known as POAIPaftern-oriented metamodel can be accessed through a number of associated
Analysis and Design[35]. In particular, they focus on how pg) 5. Finally, section 4.4 brie y explains the pattern laage

to use design patterns starting already in the analysisephafat was produced in the patterns work ow.
They identify two approaches to using patters#inging,

in which patterns are glued together to compose a desigry. It received the '06 ACM Best Open-Source Multimedia Saitevaward

4.1 CLAM: A Multimedia Processing Framework the metamodel, the use of the design patterns, and the Isene t

CLAM (originally from C++ Library for Audio and Music) of the framework.

is a full- edged software framework for application devplo))))
ment. Although it was initially tailored for audio and music4-2 4MPS: A Multimedia Domain-speci ¢ Metamodel
it has also proven its applicability to the broader Multireed The results of the CLAM development process in its meta-
domain. CLAM has been used for applications that range fromodel work ow was the Metamodel for Multimedia Process-
on-the-y analysis of video soundtracks [33] to 3D audidng Systems (4MPS for short) [4], a metamodel for designing
spacialization and integration with 3D visual scenes [10]. multimedia processing software systenise; multimedia sys-
offers a conceptual domain-speci c metamodel; algorithntems that are designed to run preferably on software pfagor
for analyzing, synthesizing and transforming audio signaland are signal processing intensive. Such systems shane man
tools for handling audio and music streams and creatingserosonstructs not only in the form of individual and indeperntden
platform applications; and ready-to-use applications. design patterns but also at the overall system model level.
We will now highlight the main features in CLAM. For fur- For this reason we proposed a coherent metamodel that
ther information please refer to our comprehensive overvieean be used to ef ciently model any multimedia processing
[5] or to any of the more focused publications cited thereisystem and aims at offering a common high-level semantic
CLAM, as well as all other included applications mentioned iframework for the domain. The metamodel uses the object-
this paper, is available for download in the project webpageoriented paradigm and exploits the relation between this
CLAM offers a processing kernethat includes arinfras- paradigm and actor-oriented graphical models of commrtati
tructure and processing and datepositories(see Figure 2). used in system engineering. The metamodel is not only an
CLAM is both ablack-boxand awhite-boxframework [28]. abstraction of many ideas found in the CLAM framework but
It is black-box because already built-in components inetlid @lso the result of an extensive review of similar frameworks
in the repositories can be connected with minimum or no pr8-is therefore expected that domain-experts are familidin w
grammer effort in order to build new applications. lvigite- Most of its concepts and constructs.
boxbecause the abstract classes that make up the infrastuctur’he metamodel is based on a classi cation of signal pro-
can be derived to extend the framework functionality witivnecessing objects into two categoriéBrocessingobjects that
processes or data classes. operate on data and control, abdta objects that passively
The CLAM infrastructureis the result of an in-depth andhold media content. Processing objects encapsulate agsroce
iterative domain analysis. It encompasses a number ofaatst©r algorithm; they include support for synchronous data pro
classes that are responsible for the white-box or extemsi§FSSing and asynchronous event-driven control as well as a
behavior in the framework. In order to build a particulafOn guration mechanism and an explicit life cycle state relod
CLAM system, the user has to instantiate the concrete diriven the other hand, Data objects offer a homogeneous ineerfac
classes or implement a derived class that might add a néwmedia data, and support for metaobject-like facilitiasis
speci ¢ processing capability. Thiafrastructure component @S e ection and serialization.
also includes the application logic such as dataow graph Althoughthe metamodel clearly distinguishes betweerethes
management and nodes execution. two different kinds of objects, the managing of Data coresu
CLAM contains aprocessing repositorgnd adata reposi- €an be almost transparent for the user. We can therefore de-
tory. The processing repository contains a large set of reaq%‘r‘-”be a 4MPS system as a set _of Processing objects connected
to-use processing algorithms. On the other hand, the ditggraphs calledNetworks(see Figure 3). _
repository contains all the classes that act as data cemgain | "€ metamodel can also be expressed in the language
or encapsulated versions of the most commonly used date?fndraphical models of computation as a particular case of
the domain. These classes make use of the data infraseucfo@t@ oW Networks[23]. Different properties of the systems,
and are therefore able to offer metaobject services such aUgh as their optimal schedule or minimal latency [8] can be
homogeneous interface or built-in automatic XML persisten derived in this way.
CLAM also includes a number of tools for services such
as input/output or XML serialization. These tools aim a#.3 Accessing the Metamodel through a Domain-
being a swiss-army knife of services that might be need&peci c Language
in the domain. All of these tools are possible because of thge 4MPS metamodel offers a domain-speci ¢ ontology that
integration of third party open libraries into the framewdn helps software developers understand the domain and helps
this sense, one of the bene ts of using CLAM is that it acts afomain experts understand the framework. However, we are
a common point for already existing heterogeneous serviegfl lacking the concrete tools that give users easy actess
[3]. all these services and put them together in a coherent way:
The framework has been tested on — but also its develape lack the concrete syntax given by the notation in which to
ment has been driven by — a number of applications. Maexpress it, we need a domain-speci ¢ language.
of these applications were used in the beginning to set theOne immediate way to access all these services and interact
domain requirements and they now illustrate the feasjbilft with the metamodel layer is to use the framework itself
and code new applications by using the black-boxes that
5. http://ww.clam-project.org are provided and extending the white-boxes. In some sense,

——————— 1
! l)
[Processing Kernel Application| Multi- .
Mofreserocre] i | Skeletons threading
! b
Flow Control I b
—| Infrastructure !
! - Audio Midi Files
I I : 1 1 Devices Devices Devices
Processing ' Processing I
Repository ! {1
- Infrastructure ,
| === ! : [Visuatization Serislization
Prccesjsing Data : Processing Data| 1
Repository - Infrastructure | Model XML
I Abstraction
L

Toolkit-dependent
implementations

Fig. 2. CLAM Components. The CLAM framework is made up of a Processing Kernel and some Tools. The Processing
Kernel includes an infrastructure that is responsible for the framework white-box behavior and repositories that offer
the black-boxes. Tools are usually wrappers around pre-existing third party libraries. A user application can make use
of any or all of these components.

Processing Object

Composite
Processing Object

! I Processing Network]
I -1

Signal Flow

Control Flow
¥

O Port
O

Control

Fig. 3. Graphical model of a 4MPS processing network. Processing objects are connected through ports and controls.
Horizontal left-to-right connections represents the synchronous signal ow while vertical top-to-bottom connectio ns
represent asynchronous control connections.

10

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<network id="ExampleNetwork">
i <processing id="file_reader" type="AudioFileReader">
<SourceFile>
(HEEEE * 1 Outport <URI>/home/xavier/0001.Wav</URI>
+ Connect(o : Outport) + Connect(i: Inport) </SourceFile>
<Loop>1</Loop>
o </processing>
+ Configure() <processing id="sink" type="AudioOut">
Ll + Start) g </processing>
+ gtof) . <processing id="control_sender" type="OutControlSende >
— ; Co?’:pcreteConfigure() - <Min>0</Min>
ConcreteStart() <Default>0</Default>
ConcreteStop() <Max>1</Max>
<Step>0.01</Step>
InControl) 1 OutControl <ControlRepresentation>Vertical Slider</ControlRepre sentation>
+ Link({o : QutControl) + Link(i : InControl) </processing>
| <port_connection>
<out>file_reader.Samples</out>
v <in>sink.Audio Input</in>
</port_connection>

<control_connection>
<out>control_sender.out</out>
<in>file_reader.Offset</in>

</control_connection>

<flowcontrol type="Push"/>

. </network>
the code —together with the metamodel, and the patterns—

provides a low-level DSL. There is, however, an importantsting 1: Simpli ed example of a 4MPS Network de nition
issue with using this approach: the DSL syntax becomsgsing CLAM's XML Networks DSL syntax.
coupled to the low-level programming language syntax. This

. k = ClamNetwork(file(fullSourcePath
makes it hard for users to focus on the metamodel level alf"" amNetwork(file(fullSourcepat))
network.setConfig(source, "NSources", numPorts))

Fig. 5. Main participant classes in the CLAM implemen-
tation of the 4MPS metamodel

it becomes a barrier to its understanding. for i in range(numPorts) :

For this reason, we decided to offer an alternative and mor@ewprocessing = "%s_%s"%(delay,i)
accessible DSL syntax in the form of a visual language. 4MP Sietwork.duplicateProcessing(delay, newProcessing, 10 *i, 50 *i)
is itself a graphical metamodel so offering access to thislle nefwork.addConnection('controI_connection', "Backgro undDelay",

) . i ' i 0" newP ing, "Delay in Samples”
becomes immediate and simply a matter of implementing hewProcessing, "Delay in Samples?)

the appropriate tool. In CLAM, this tool is known as the.isting 2: Example of a complex CLAM network de ned as a
NetworkEditor —because of its relation to the Network clagsiodi cation of a previous network (maybe designed with the
in the metamodel. The Network Editor allows users to interadisual Networks syntax) using the Scripted Networks DSL
directly with a graphical representation of the metamodeé(syntax.

Figure 4), which in turn maps directly to framework classes

and constructs.

The Network Editor is a stand-alone application developed direct visual representation. This allows users to ictera
by adding a presentation layer to the framework classes. Tdm@phically with the metamodel without directly accessiing
user can directly access the repository of black-box compBLAM framework. As a matter of fact, the Network Editor
nents and interact with it by con guring objects and de ningtself bases its persistency format on this XML schema.
4MPS Networks. The tool cannot only be used to build fast This way we see that the metamodel is not coupled to
prototypes but it can in fact generate nal applicationshei a particular visual language but can in fact be instantiated
stand-alone or audio plugins, with ef ciently compiled @d by different syntaxes such as an XML dialect or a scripting

Both the metamodel and the associated DSL were evalualedguage. As a matter of fact, once we have the metamodel
using the approach described in Section 2.2.3. See the-puhlid the framework in place we can think about extending the
cation where the metamodel is presented for more details available syntaxes with other syntaxes that are optimined f
the results [4]. some particular uses.

The following list summarizes the 5 syntaxes that have
4.3.1 Optimized CLAM DSL Syntaxes for Speci c Prob- been developed within CLAM with their advantages and
lems disadvantages:

Although the graphical representation of the metamodel is Black-box C++ is code in C++ using the black-box
usually preferred, it is sometimes practical to have a tlirec framework style (i.e. instantiating Processing objects vi
one-to-one mapping to a textual format. In the case of CLAM, factories, connecting their data and control ports, con-
XML was chosen as the basis for our textual-based DSL guring their parameters and setting them into running
syntax (see example in Listing 1). Because these textual le state.

contain a complete de nition of a 4MPS Network, they have Pros: It gives total exibility and it is appropriate for

File Network Interface
BEd= Q0 &S B AKX @12

Processing Toolbox

@ Audio Input/Output

- Audio File /O
% MonoAudioFileReader
@ MonoAudioFileWriter

® MultiChannelAudioFileReader
@ MultiChannelAudioFileWriter

View Help

e®

@ Graphical Monitors

11

Double click: configure. Left click: Processing menu

stopped | s

Fig. 4. NetworkEditor is the visual DSL for the CLAM framework. It can be used not only as an interactive multimedia
data ow application but also to build networks that can be ru n as stand-alone applications.

some speci ¢ uses, such as the ones requiring a complex by using textual functions such as “copy & paste” or

application logic.
Cons: Exposes the C++ syntax and low-level (non
domain-related) details to domain-experts. It may also
be unsafe, since the user can introduce operations that
compromise the execution requirements such as real-time
constraints.

Black-box Scripting is based on Python code in the
black-box framework style.

Pros: It has a simpli ed syntax, when compared to the
black-box C++, while still retaining much of its exibil-

ity. It allows for interactive signal-processing scrifgim
Python. It eases the process to graphically represent data
using drawing packages.

Cons: It does not allow running in real-time with low-
latency, and it does not separate the network con guration
state from the network running state.

Scripted Networks Python code using a module for
creating and modifying previously created networks (see
listing 2) This syntax is used to scale up simpler networlﬁs'4
created with the Visual Networks DSL syntax. Therefore\;5
the two concrete syntaxes works synergistically in a sam
work ow.

“replace all”. It is the serialization format of the Visual
Networks.

Cons:lt is less intuitive, dif cult to modify, easy to cause
errors. Better manipulated through intermediate tools.
Visual Networks is the NetworkEditor's visual building
language (see g 4).

Pros: It is an intuitive and didactical way to describe
multimedia processing algorithms allowing both signal
processing and control ows. It executes compiled code
ef ciently while allowing users to interact with control
parameters and to receive visual feedback of data owing
through the network.

Cons:lt is dif cult to manage big or repetitive networks
— for example when the number of sub-networks is a
con gurable parameter. It is also dif cult to recon gure
parameters consistently across many processing objects
in the network (or many networks).

A Pattern Language for Multimedia Processing

stems
While 4MPS offers a valid high-level metamodel for the

Pros: It is the concrete DSL syntax in CLAM that allowsdomain, it is sometimes more useful to present a lower-level
for a better management of complexity, because of ifdchitecture i.n the Ian_guage o_f design patterns, whereniagu
high-level interface for creating and modifying networksand non-ob\{|ous design solutions can be shared. Such ampatte
The runtime of this concrete DSL syntax is CLAM's prolanguage bridges the gap betV_/een an abst_ract metamodel such
totyper which offers both real-time and of ine operation@ 4MPS and the concrete implementation given a set of
Cons: Though it comes close, it is not as exible as th&onstraints. It also provides an ef cient way to documerg th
black-box framework approaches. framework itself [20]. _

XML Networks is the textual XML de nition of a In the following paragraphs we offer a brief summary of a
network (see listing 1) complete pattern language for data ow real-time multinzedi
Pros: It gives access to all the details the network. Caprocessing formalized by the authors [9]. _

be written programaticaly and executed ef ciently with All the pattems in our catalog t within the generic ar-

CLAM's Prototyper. It allows for repetitive operationschiteéctural pattern de ned by Manolescu as thata Flow
Architecture[24]. However, this architectural pattern does not

address relevant problems related to the real-time muttigne| Cenere Dataow Patirs |

processing such as message passing protocols, scheduling
of processing-objects executions or data management. Our

pattern language is organized within three main categories
General Data ow Patterns address problems of how to

organize high-level aspects of the data ow architecturg,

by having different types of module connections.
Flow Implementation Patterns address how to physi-

cally transfer tokens from one module to another, accord-

ing to the types of ow de ned by thegeneral data ow
patterns Tokens life-cycle, ownership and memory man-
agement are recurrent issues in those patterns.

Network Usability Patterns address how humans can
interact with data ow networks.

A—>» B A enables B

A---3B

Auses B

Dataflow Architecture

Semantic Ports
Stream and Event Ports

Typed Connections

Flow Implementation Patterns ‘

Some of the patterns in the catalog are very high-level wh

e

other are much focused on implementation issues. Although

the catalog is not domain-complete, it can be considered
pattern languagéecause each pattern references higher-le

solution. These relations form a hierarchical structungated

in Figure 6. The arcs between patterns represent “enables
relations: introducing a pattern in the system enablesrothe

patterns to be used.

a
el
patterns describing the context in which it can be applied,
and lower-level patterns can be used to further re ne the

Multi-rate Stream Ports Cascading Event Ports
@ultiple Window Circular Buffer >

4
Phantom Buffer

The catalog shows how to approach the development o

Network Usability Patterns ‘ / Visual Prototyping Patterns ‘

complete data ow system in an evolutionary fashion without
the need to ddig up-front designOn each decision, which
will introduce more features and complexity, a recurre

problem is faced and addressed by one pattern in the language

Two of these patternSyped ConnectionendPort Monitor,

Port Monitor

- Visual Prototyper

are central to CLAM because they enable two key features of

the framework which are: One, the ports are typed but ne
restricted to a number of types and two, the processed df"‘et\ael
can be visualized in real-time while keeping up with the lockorde

free constraints of the processing thread.
We shall now provide here a summarized version as

. 6. The multimedia data ow pattern language. High-
patterns are on the top and the arrows represent the
r in which design problems are being addressed by

developers.
an

example of the kinds of patterns available in the cataloghis could imply, at least, that the connection entity would
Apart from their importance in the context of CLAM, wehave a maintainability problem.

have chosen these two patterns for another reason: They botRroblem: Connectible entities communicate typed tokens
have broad applicability beyond the specic context of oubput token types are not limited. Thus, how can a connection
framework. Complete versions of these and the rest of theaker do typed connections without knowing the types?
Forces:

patterns can be found in the original catalog [9].

4.4.1 Pattern: Typed Connections

Context: Multimedia data ow systems might need to manage
different kinds of tokens. In the audio domain we might

need to deal with audio buffers, spectra, spectral peaks,
MFCC's, etc. Heterogeneous data could be handled in a

generic way (common abstract class, void pointers...) lust t

adds a dynamic type handling overhead to modules. Module

programmers should have to deal with this complexity and

this is not desirable. It is better to directly provide thene t

The processing thread is cost-sensitive and should avoid
dynamic type checking and handling;

Connections are done at run-time by the user, so mis-
matches in the token type should be handled;

Dynamic type handling is a complex and error prone

programming task, thus, placing it on the connection

infrastructure is preferable than placing it on concrete

modules implementation;

The collection of token types evolves and grows and this

should not affect the infrastructure.

proper token type. Besides that, coupling the communioatio Solution:

channel between modules with the actual token type is goodSplit complementary ports interfaces into an abstractl|eve

because this eases the channel internal buffers managemeniich is independent of the token-type, and a derived level
Using typed connections may imply that the entity thahat is coupled to the token-type. Let the connection maker

handles the connections should deal with all the possilplesty set the connections thorough the generic interface, whide t

13

ST Connection Maker [— -~I Visualizations must be uid; that means that it should
1
1

. visualize on time and often but it may skip tokens

Vv ! The processing is not lling all the computation time
AbstractFemale v Solut_ion:_The solution is to encapsulate concurrency in
AbstractMale a special kind of process module, tRert monitor, that is
+bind (AbstractMale) . .
+isCompat ible (AbstractMale) +TokenType () () connected to the monitored out-pdPort monitorsoffers the
#doTypedBinding (AbstractMale) visualization thread a special interface to access tokers i
[ﬁ thread-safe way. Internally they have a lock-free datectire
frokemii ! Token: 1 which can be simpler than a lock-free circular buffer sirtue t
- Tc oken ===
Female [F--=7= Male visualization can skip tokens.
+isCompatible (AbstractMale) tokenType () To manage concurrency and avoid process stallingPtre
tdoTypedbinding (Abstracthiale) monitor uses two alternated buffers to copy tokens. In a given

time, one of them is the writing one and the other is the readin
Fig. 7. Class diagram of a canonical solution of Typed one. ThePort monitor state includes a ag that indicates
Connections which buffer is the writing one. Th&ort monitor execution

starts by switching the writing buffer and copying the cuatre
connected entities use the token-type coupled interface téiken there. Any access from the visualization thread, dock
communicate with each other. Access typed tokens from thkge buffer switching ag. Port execution usestry lock to
concrete module implementations using the typed interfaggvitch the buffer. So, the process thread is not blocked; it i
Figure 7 shows the class diagram for this solution. just writing on the same buffer while the visualization hold

Use run-time type checks when modules get connectér lock.

(binding tim§ to make sure that connected ports types are

Flag with mutex
(Graphical) Monitor

coupled sub-classes.

Consequences:The solution implies that the connection
maker is not coupled to token types. Only concrete modules
are coupled to the token types they use.

Type safety is ensured by checking the dynamic type at
binding time and relying on compile time type checks duringig. 8. A port monitor with its switching two buffers
P Seomuse both sdes.of the coneaton know th token type CONSCUENCESIADDIYING ths pattern we miimize the

ypo‘?OCkmg effect of concurrent access on two fronts. On one

bufferlng stru.cture.s can de-al with to-kens N a wiser way Whesri‘de, the processing thread never blocks. On the other, the
doing allocations, initializations, copies, etc. Conenetodules

. blocking time of the visualization thread is very reducesl, a
only have access to the static typed tokens. So, no dynal 9 y

e r??'(c‘mly lasts a single ag switching.
type handling is needed. Unfortunately, the visualization thread may suffer stéiora

. risk. Not because the visualization thread will be blocked,
4.4.2 Pattern: Port Monitors but because it may be always reading from the same buffer.
Context: Some multimedia applications need to show a graphhis may happen if every time the processing thread tries to
ical representation of tokens that are being produced byesoawitch the buffers, the visualization is blocking. Expede
module out-port. While the visualization only has soft regqu tells us that this effect is not critical and can be avoided
ments related to its smoothness, the process has real-tiblyeminimizing the time the visualization thread is accegsin
requirements. This normally requires splitting visuadiaa tokens, for example, by copying and releasing them.
and processing into different threads, where the procgssin
thread is scheduled as a high-priority thread. But becsuse b CONCLUSIONS: FRAMEWORKS GENERATE
non real-time monitoring must have access to the processD@®MAIN-SPECIFIC LANGUAGES

thread tokens some concurrency handling is needed and (s have presented a framework development process that aims
often implies locking in the two threads. _ at generating a domain-speci c metamodel with associated
Problem: We neegl tolgraphlcall_y monitor tokgns being Progomain-speci ¢ languages and a pattern language. In most
cessed. How to do it without locking the real-time procegsinases it is unrealistic to deploy a DSL by designing a full-
while keeping the visualization uid? edged domain framework as there are easier and more
Forces: direct ways of obtaining the bene ts of DSLs. However, our
The processing has real-time requirements (i.e., Tipeoposal is the complementary: when designing a framework
process result must be calculated in a given time slot)you should aim at producing a DSL.

In-Band Process
(high-priority)

Out-of-Band Process
(low-priority)

;) ; (thread boundary) !
compatible, and, once they are correctly conneqgpeaoessing Monitored por - ou:’ ” : <
time), rely only on compile-time type checks. To do that, the 5 : :
generic connection method on the abstract interféded() y : 4
delegates the dynamic type checking to abstract methd Y 3o :‘\@‘;foif‘ing '
. . . urrer
(isCompatible andtypeld) implemented on token-type | } :
:
:
1
1

14

When building an application framework we are genefn this same company he is involved in activities related
alizing across a set of systems that belong to a particutar Software Architecture best-practices and Agile methods
domain. We aim at offering the tools and the conceptuAt the same time, he is Associate Professor at Universitat
infrastructure needed to implement all those systems. A wePompeu Fabra, where he teaches Software Engineering and
designed framework is not just about reuse of code but alsdormation Retrieval. Previous to this, Dr. Amatriain was
about conceptual reuse: it should present a precise modeR&fsearch Director at University of California Santa Baabar
computation and a conceptual framework or domain metahere he lead research in immersive and virtual environsent
model. The white-box components (i.e. base classes) of #med 3D Audio. He has been coordinating the CLAM project
framework are mainly responsible for it. for Audio and Multimedia processing since its inceptionhia t

Our process model is iterative but promotes the separurse of his PhD Thesis.
tion of concerns in three different work ows — framework,
metamodel, and patterns — and activities in three differd
phases — inception, construction, and formalization. tfeoto
derive our particular domain metamodel we need to perfor
some initial analysis to identify basic requirements, ustid
different viewpoints, and choose driving applications e t g
inception phase. But we cannot aim at understanding &
modeling the whole domain from the start. The framewo
development process is, as most software development, it-
erative by nature. Thus, just as the framework is iterativel pau Arum received the PhD degree in computing science
constructed, so should the metamodel and the pattern lgegugtom the Universitat Pompeu Fabra in 2009, and the MSc
be re ned in each iteration. in computer science from the Universitat PAlichica de

And once we have a stable domain metamodel, it Gatalunya in 2002. He is currently a researcher at Barcelona
fairly straightforward to provide associated domain-spec Media audio group leading the development team and work-
languages. We have the concepts and constructs, all we j@g on real-time 3D audio systems. He where he has been
missing is an appropriate notation. The code, together witfyolved in several industrial projects delivering syssem
the white-box and black-box components it allows to accesfe areas of 3D audio authoring tools, cinema exhibition and
can already be considered an initial — and low-level — DSkve events broadcasting. From 2000 to present he is one
Adding textual or visual concrete syntax to this well-deche of the core developer of the CLAM open-source framework.
metamodel is only an implementation detail. He is a professor of software engineering in the Technology

Our main conclusion is that any well-conducted frameworsepartment of the Universitat Pompeu Fabra. His interests
design process will produce a DSL. Therefore, just afclude data ow-based real-time multimedia processingl an
patterns generate architecturgdl], frameworks generate 3D audio technologies.
domain-speci c languages

ACKNOWLEDGEMENTS REFERENCES

We would like to thank all developers of the CLAM frameworK1] M. Aksit, F. Marcelloni, and B. Tekinerdogan. Develoirobject-

oriented frameworks using domain modelsACM Comput. Sury.

who have participated in the process described in this paper
throughout the years. In particular we should mention thg
continuous contribution of David Garcia. Work in this paper
has been partially funded by an ICREA grant from the CataldH
Government, the Universitat Pompeu Fabra and Barcelopp
Media.

ABOUT THE AUTHORS

[10]

Xavier Amatriain is Research Scientist in Telefonica Re-11
search, where he currently leads research projects re!late(g]
Web Mining, Social Networks and Recommender Systems.

page 11.

C. Alexander. The Timeless Way of Buildingdxford University Press,
1979.

X. Amatriain. Clam: A framework for audio and music apgltion
development.|[EEE Software 24(1):82-85, Jan/Feb 2007.

X. Amatriain. A domain-speci c metamodel for multimexdiprocessing
systems.|[EEE Transactions on Multimedi&(6):1284 — 1298, 2007.
X. Amatriain, P. Arumi, and G. D. A framework for ef cienand rapid
development of cross-platform audio application&CM Multimedia
Systems14(1), 2008.

S. W. Ambler. Agile Model Driven Development Is Good EmbulEEE
Software September 2003.

G. Arango. A brief introduction to domain analysis. BAC '94:
Proceedings of the 1994 ACM symposium on Applied compuytiages
42-46, New York, NY, USA, 1994. ACM.

P. Arumi and X. Amatriain. Time-triggered static schéhle data ows
for multimedia systems. IRroceedings MMCNS 'Q22009.

P. Arumi, D. Garcia, and X. Amatriain. A data ow patterariguage for
sound and music computing. Rroceedings of Pattern Languages of
Programming (PloP 06)2006.

P. Arumi, D. Garcia, T. Mateos, A. Garriga, and J. DuraReal-time
3d audio for digital cinema.The Journal of the Acoustical Society of
Americg 123(5):3937.

K. Beck and R. Johnson. Patterns Generate ArchitextureProceed-
ings of the 8th European Conference on Object-Oriented faragning
Bologna, Italy, 1994.

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]
[27]

[28]

[29]

(30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

D. Bonachea, K. Fisher, A. Rogers, and F. Smith. Hancadiknguage
for processing very large-scale data. RbAN '99: Proceedings of the
2nd conference on Domain-specic languaggmges 163-176, New
York, NY, USA, 1999. ACM.

J. Bosch, M. Molin, M. Mattson, and P. BengtssoBuilding Appli-
cation Frameworkschapter Object-oriented frameworks - Problems &
Experiences. Wiley and Sons, 1999.

F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, andSkAl.
Pattern-Oriented Software Architecture - A System of Radte John
Wiley & Sons, 1996.

J. Cleaveland. Building application generatd®sftware, IEEE5(4):25—
33, 1988.

S. Cook. Domain-speci ¢ modeling and model driven atetture. MDA
Journal pages 2-10, January 2004.

T. R. G. Green and M. Petre. Usability analysis of vispadgramming
environments: A 'cognitive dimensions' frameworklournal of Visual
Languages and Computing(2):131-174, 1996.

P. Hudak. Building domain-specic embedded languagesACM
Computing Survey=8, 1996.

E. E. Jacobsen, B. B. Kristensen, and P. Nowack. Cheniaittg patterns
in framework development. IfProceedings of the 25th International
Conference on Technology of Object-Oriented LanguagesSystems
1997.

R. E. Johnson. Documenting Frameworks with Pattemn®roceedings
of OOPSLA '92 Vancouver, Canada, 1992.

R. E. Johnson and J. Foote. Designing Reusable Claskesnal of
Object Oriented ProgrammingdL(2):22—35, June/July 1988.

C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unied Process (2ndti&u).
Prentice Hall PTR, July 2001.

E. Lee and T. Parks. Data ow Process NetworksPhoceedings of the
IEEE, volume 83, pages 773-799. 1995.

D. A. Manolescu. A Data ow Pattern Language. Rroceedings of the
4th Pattern Languages of Programming Conferent@97.

S. J. Meller, A. M. Clark, and T. Futagami. Model Drivere@lopment.
IEEE Software September 2003.

M. Mernik, J. Heering, and A. M. Sloane. When and how tealep
domain-speci ¢ languagesACM Comput. Sury.2005.

W. Pree. Design Patterns for Object-Oriented Software Development
Addison-Wesley, 1995.

D. Roberts and R. Johnson. Evolve Frameworks into DorSgieci ¢
Languages. IfProcedings of the 3rd International Conference on Pattern
Languages for Programmindvionticelli, IL, USA, September 1996.
D. Roberts and R. Johnson. Evolving frameworks: A patfanguage
for developing object-oriented frameworks. Pnoceedings of the Third
Conference on Pattern Languages and Programmimume 3, 1996.
L. Sesera. Hierarchical patterns: A way to organizealigsis) patterns.
Journal of Systemics, Cybernetics and Informat®@):37-40, 2005.
A. van Deursen. Domain-specic languages versus dhjeented
frameworks: A nancial engineering case study. 3malltalk and Java
in Industry and Academia, STJA'9pages 35-39, 1997.

A. van Deursen, P. Klint, and J. Visser. Domain-spedanguages: an
annotated bibliographySIGPLAN Not. 35(6):26—36, 2000.

J. Wang, X. Amatriain, and D. Garcia. Multilevel audiestription. In
Proc. of WWW '08

D. West. Metaphor, Architecture and XP. Rroceedings of the 2002
XP Conference2002.

S. Yacoub and H. Ammar. Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software System&ddison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

S. Zachariadis, C. Mascolo, and W. Emmerich. The satimmonent
system-a metamodel for engineering adaptable mobile regsttEEE
Transactions on Software Engineerjrig006.

M. Zelkowitz and D. Wallace. Experimental validation software
engineering. Information and Software Technolqg$9(11), November
1997.

